At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless an...At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless and odorless, difficult to find in time, and bring huge safety risks to the life and health of residents. Based on the above problems, we developed a gas monitoring and removal device which could reduce the effect of extinction coefficient. The device was composed of ash settling area, gas disturbance area, spectral absorption identification area and gas removal area. After the air entered the device, the large-size particles were first settled to purify the solid particles in the gas, the gas was disturbed through the multi-layer separator to achieve the turbulent production of the gas, and then the gas was identified through the optical element of the direct absorption spectrum technology. When the toxic gas component reached the threshold, the spray device would automatically start for chemical removal to achieve the role of purifying the gas. At the same time, the device’s alarm could be alerted by buzzer and flash to remind users to evacuate in time. By improving the optical device, the effect of extinction coefficient on measurement was reduced and the monitoring accuracy was improved.展开更多
文摘At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless and odorless, difficult to find in time, and bring huge safety risks to the life and health of residents. Based on the above problems, we developed a gas monitoring and removal device which could reduce the effect of extinction coefficient. The device was composed of ash settling area, gas disturbance area, spectral absorption identification area and gas removal area. After the air entered the device, the large-size particles were first settled to purify the solid particles in the gas, the gas was disturbed through the multi-layer separator to achieve the turbulent production of the gas, and then the gas was identified through the optical element of the direct absorption spectrum technology. When the toxic gas component reached the threshold, the spray device would automatically start for chemical removal to achieve the role of purifying the gas. At the same time, the device’s alarm could be alerted by buzzer and flash to remind users to evacuate in time. By improving the optical device, the effect of extinction coefficient on measurement was reduced and the monitoring accuracy was improved.