Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adh...Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.展开更多
The joined-wing configuration reduces induced drag and structural weight by connecting the rear wing to the front wing.In addition,the rear wing can replace the role of the horizontal tail of a conventional aircraft,t...The joined-wing configuration reduces induced drag and structural weight by connecting the rear wing to the front wing.In addition,the rear wing can replace the role of the horizontal tail of a conventional aircraft,thus eliminating the aerodynamic drag and weight associated with the horizontal tail.This particular shape creates a highly coupled relationship between aerodynamics and structure,which must be fully considered during the overall design process to enhance aircraft performance.In this research,an aero-structural design model of the joined-wing aircraft is constructed based on high-fidelity computational fluid dynamics and structural finite element methods.The model is able to obtain accurate aerodynamic loads for the non-planar wing and to simulate the statically indeterminate structure of the closed wing configuration.The influence of the joined-wing shape parameters on the aerodynamic and structural disciplines,as well as the influence of geometric nonlinear characteristics,deformation constraints and buckling constraints on the structural weight are all taken into consideration.The model is applied to complete the aero-structural design optimization of a high-altitude long-endurance joined-wing aircraft,and wind tunnel tests are conducted.The test results verify the credibility of the design model proposed and the validity of the design environment.展开更多
基金financial support from the National Natural Science Foundation of China(No.51605220)the Jiangsu Province Natural Science Foundation,China(No.BK20160793)+1 种基金the Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics,China(No.xcxjh20210514)the Fundamental Research Funds for the Central Universities,China(No.XCA2205406)。
文摘Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.
基金supported by the Fundamental Research FundsfortheCentralUniversities,China(No. 56XCA2205402)。
文摘The joined-wing configuration reduces induced drag and structural weight by connecting the rear wing to the front wing.In addition,the rear wing can replace the role of the horizontal tail of a conventional aircraft,thus eliminating the aerodynamic drag and weight associated with the horizontal tail.This particular shape creates a highly coupled relationship between aerodynamics and structure,which must be fully considered during the overall design process to enhance aircraft performance.In this research,an aero-structural design model of the joined-wing aircraft is constructed based on high-fidelity computational fluid dynamics and structural finite element methods.The model is able to obtain accurate aerodynamic loads for the non-planar wing and to simulate the statically indeterminate structure of the closed wing configuration.The influence of the joined-wing shape parameters on the aerodynamic and structural disciplines,as well as the influence of geometric nonlinear characteristics,deformation constraints and buckling constraints on the structural weight are all taken into consideration.The model is applied to complete the aero-structural design optimization of a high-altitude long-endurance joined-wing aircraft,and wind tunnel tests are conducted.The test results verify the credibility of the design model proposed and the validity of the design environment.