Blocking the programmed death-ligand 1(PD-L1)on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy.However,only a minority of patients presented immune responses in cli...Blocking the programmed death-ligand 1(PD-L1)on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy.However,only a minority of patients presented immune responses in clinical trials.To develop an alternative treatment method based on immune checkpoint blockade,we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5(Cdk5)gene in vivo.The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5,leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer.Importantly,we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8^+T cells was significantly increased while regulatory T cells(Tregs)was decreased.It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy.It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering.展开更多
基金supported by the National Natural Science Foundation of China(81872810,81673374 and 81871473)Wuhan University of Science and Technology Plan for Applied Fundamental Research(2017060201010146,China)the Fundamental Research Funds for the Central Universities(2018KFYYXJJ019,2019KFYRCPY049 and 2016YXMS138,China).
文摘Blocking the programmed death-ligand 1(PD-L1)on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy.However,only a minority of patients presented immune responses in clinical trials.To develop an alternative treatment method based on immune checkpoint blockade,we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5(Cdk5)gene in vivo.The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5,leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer.Importantly,we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8^+T cells was significantly increased while regulatory T cells(Tregs)was decreased.It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy.It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering.