A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham...This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.展开更多
Objective:We aimed to establish a scoring system to predict the risk of breast cancer-related lymphedema.Methods:From April 2017 to December 2018,533 patients who previously underwent surgery for breast cancer were en...Objective:We aimed to establish a scoring system to predict the risk of breast cancer-related lymphedema.Methods:From April 2017 to December 2018,533 patients who previously underwent surgery for breast cancer were enrolled in this cross-sectional study.Univariate analysis was performed to explore and define the risk factors.A scoring system was then established on the basis of odds ratio values in the regression analysis.Results:The additive scoring system values ranged from 6 to 22.The receiver operating characteristic(ROC)curve of this scoring system showed a sensitivity and specificity of 83.3%and 57.3%,respectively,to predict the risk of lymphedema at a cut-off of 15.5 points;the area under the curve was 0.736(95%confidence interval:0.662-0.811),with x2=5.134(P=0274)for the Hosmer-Lemeshow test.Conclusions:The predictive efficiency and accuracy of the scoring system were acceptable,and the system could be used to predict and screen groups at high risk for breast cancer-related lymphedema.展开更多
Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the...Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning.To address this issue,our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention(PCGAN-EASA),which incrementally improves the quality of generated EEG features.This network can yield full-scale,fine-grained EEG features from the low-scale,coarse ones.Specially,to overcome the limitations of traditional generative models that fail to generate features tailored to individual patient characteristics,we developed an encoder with an effective approximating self-attention mechanism.This encoder not only automatically extracts relevant features across different patients but also reduces the computational resource consumption.Furthermore,the adversarial loss and reconstruction loss functions were redesigned to better align with the training characteristics of the network and the spatial correlations among electrodes.Extensive experimental results demonstrate that PCGAN-EASA provides the highest generation quality and the lowest computational resource usage compared to several existing approaches.Additionally,it significantly improves the accuracy of subsequent stroke classification tasks.展开更多
A boundary element method(BEM) is presented to compute the transmission spectra of two-dimensional(2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction.T...A boundary element method(BEM) is presented to compute the transmission spectra of two-dimensional(2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction.The cross sections of the scatterers may be circular or square.For a periodic cell,the boundary integral equations of the matrix and the scatterers are formulated.Substituting the periodic boundary conditions and the interface continuity conditions,a linear equation set is formed,from which the elastic wave transmission can be obtained.From the transmission spectra,the band gaps can be identified,which are compared with the band structures of the corresponding infinite systems.It is shown that generally the transmission spectra completely correspond to the band structures.In addition,the accuracy and the efficiency of the boundary element method are analyzed and discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金Project supported by the National Natural Science Foundation of China(No.11972082)。
文摘This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.
基金This study was supported by Nursing Research Grant of Peking University Health Science Center(BMU20160517).
文摘Objective:We aimed to establish a scoring system to predict the risk of breast cancer-related lymphedema.Methods:From April 2017 to December 2018,533 patients who previously underwent surgery for breast cancer were enrolled in this cross-sectional study.Univariate analysis was performed to explore and define the risk factors.A scoring system was then established on the basis of odds ratio values in the regression analysis.Results:The additive scoring system values ranged from 6 to 22.The receiver operating characteristic(ROC)curve of this scoring system showed a sensitivity and specificity of 83.3%and 57.3%,respectively,to predict the risk of lymphedema at a cut-off of 15.5 points;the area under the curve was 0.736(95%confidence interval:0.662-0.811),with x2=5.134(P=0274)for the Hosmer-Lemeshow test.Conclusions:The predictive efficiency and accuracy of the scoring system were acceptable,and the system could be used to predict and screen groups at high risk for breast cancer-related lymphedema.
基金supported by the General Program under grant funded by the National Natural Science Foundation of China(NSFC)(No.62171307)the Basic Research Program of Shanxi Province under grant funded by the Department of Science and Technology of Shanxi Province(China)(No.202103021224113).
文摘Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning.To address this issue,our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention(PCGAN-EASA),which incrementally improves the quality of generated EEG features.This network can yield full-scale,fine-grained EEG features from the low-scale,coarse ones.Specially,to overcome the limitations of traditional generative models that fail to generate features tailored to individual patient characteristics,we developed an encoder with an effective approximating self-attention mechanism.This encoder not only automatically extracts relevant features across different patients but also reduces the computational resource consumption.Furthermore,the adversarial loss and reconstruction loss functions were redesigned to better align with the training characteristics of the network and the spatial correlations among electrodes.Extensive experimental results demonstrate that PCGAN-EASA provides the highest generation quality and the lowest computational resource usage compared to several existing approaches.Additionally,it significantly improves the accuracy of subsequent stroke classification tasks.
基金supported by the National Natural Science Foundation of China(Grant Nos.11202021,11472249 and 51178037)the Beijing Natural Science Foundation(Grant No.1163008)the Postdoctoral Science Foundation of China(Grant No.2012M510311)
文摘A boundary element method(BEM) is presented to compute the transmission spectra of two-dimensional(2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction.The cross sections of the scatterers may be circular or square.For a periodic cell,the boundary integral equations of the matrix and the scatterers are formulated.Substituting the periodic boundary conditions and the interface continuity conditions,a linear equation set is formed,from which the elastic wave transmission can be obtained.From the transmission spectra,the band gaps can be identified,which are compared with the band structures of the corresponding infinite systems.It is shown that generally the transmission spectra completely correspond to the band structures.In addition,the accuracy and the efficiency of the boundary element method are analyzed and discussed.