期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Self-assembling nacre-like high-strength and extremely tough polymer composites with new toughening mechanism
1
作者 Yu Bu Xu Wang +6 位作者 Xiuming Bu Zhengyi Mao Zhou Chen Zebiao Li fengqian hao Johnny C.Ho Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期236-244,共9页
Achieving high strength,deformability and toughness in polymers is important for practical industrial applications.This has remained challenging because of the mutually opposing effects of improvements to each of thes... Achieving high strength,deformability and toughness in polymers is important for practical industrial applications.This has remained challenging because of the mutually opposing effects of improvements to each of these properties.Here,a self-assembling nacre-like polymer composite is designed to achieve ex-tremely tough with increasing strength.This special design significantly improved polymer’s mechanical properties,including an ultra-high fracture strain of 1180%,a tensile strength of 55.4 MPa and a toughness of 506.9 MJ/m^(3),which far exceed the highest values previously reported for polymer composites.This ex-cellent combination of properties can be attributed to a novel toughening mechanism,achieved by the synergy of the domain-limiting effect of metallic glass fragments with the strain-gradient-induced orien-tation and crystallisation within the polymer during stretching.Our approach opens a promising avenue for designing robust polymer materials in armour and aerospace engineering for a range of innovative applications. 展开更多
关键词 Polymer composites Metallic glass thin film Toughness Toughening mechanism Nacre-like fracture
原文传递
Continuous morphing trailing-edge wing concept based on multi-stable nanomaterial 被引量:3
2
作者 fengqian hao Tao TANG +3 位作者 Yuan GAO Yimeng LI Shenghui YI Jian LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期219-231,共13页
Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft... Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft,but insufficiently effective for the entire flight envelope.Recent research on morphing wing still faces the challenge that the skin material for morphing should be both deformable and stiff.In this study,a continuous morphing trailing-edge wing with a new multi-stable nano skin material fabricated using surface mechanical attrition treatment technology was proposed and designed.Computational fluid dynamics simulation was used to study the aerodynamic performance of the continuous morphing trailing-edge wing.Results show that the lift coefficient increases with the increase of deflection angle and so does the lift-drag ratio at a small angle of attack.More importantly,compared with the wing using flaps,the continuous morphing trailing-edge wing can reduce drag during the morphing process and its overall aerodynamic performance is improved at a large angle of attack range.Flow field analysis reveals that the continuous morphing method can delay flow separation in some situations. 展开更多
关键词 Aerodynamic performance Computational fluid dynamics Continuous morphing trailing-edge wing Multi-stable nanomaterial Surface mechanical attrition treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部