Amines are important for new particle formation and subsequent growth in the atmosphere.Consequently,the processes involved are receiving more attention in recent years.Here,we conduct a field observation in order to ...Amines are important for new particle formation and subsequent growth in the atmosphere.Consequently,the processes involved are receiving more attention in recent years.Here,we conduct a field observation in order to investigate the atmospheric particulate amines at a background site in the Yangtze River Delta(YRD)during the summer of 2018.Four amines in PM_(2.5),i.e.,methylamine(MA),dimethylamine(DMA),diethylamine(DEA),and trimethylamine(TMA),were collected,twice daily and analyzed.During the campaign,our measurements found the concentrations of MA,DMA,DEA,and TMA of 15.0±15.0,6.3±6.9,20.4±30.1,and 4.0±5.9 ng m^-(3),respectively,and the four amines correlated well with each other.The concentration of amines appear to be independent of whether they were collected during the day or night.Both MA and DMA exhibited a bimodal size distribution that had peaks at 0.67 and 1.1μm,suggesting amines preferably distribute on submicron particles.Boundary layer height(BLH),relative humidity,and pH of aerosols were found have a negative relationship with amines,while aerosol liquid water content(ALWC)was found to have a positive relationship with amines.The PMF(positive matrix factorization)source apportionment results showed that the main source of amines in Chongming Island was of anthropogenic origin such as industrial and biomass emission,followed by marine sources including sea salt and marine biogenic sources.Given that the YRD region is still suffering from complex atmospheric pollution and that the knowledge on aerosol amines is still limited,more field studies are in urgent need for a better understanding of the pollution characteristics of amines.展开更多
Brown carbon(BrC)is one of the important light absorption substances that have high light absorption ability under short wavelength light.However,limit studies have focused on the BrC emission from ships.In this study...Brown carbon(BrC)is one of the important light absorption substances that have high light absorption ability under short wavelength light.However,limit studies have focused on the BrC emission from ships.In this study,size-segregated particulate matters(PM)were collected from three different types of ships,light absorption characteristics and size distribution of methanol-soluble BrC and water-soluble BrC in PM from ship exhausts were investigated.Results showed that four-stroke low-power diesel fishing boat(4-LDF)had the highest mass concentrations of methanol-soluble organic carbon(MSOC)and water-soluble organic carbon(WSOC),followed by 2-stroke high-power heavy-fuel-oil vessel(2-HHV),and fourstroke high-power marine-diesel vessel(4-HMV).While 2-HHV had obviously higher light absorption coefficients of methanol-soluble BrC(Abs365,M)and water-soluble BrC(Abs365,W)in unit weight of PM than the other two types of ships.The tested ships presented comparable or higher absorption efficiency of BrC in water extracts(MAE365,W)compared with other BrC emission sources.Majority of BrC was concentrated in fine particles,and the particle size distributions of both Abs365,Mand Abs365,Wshowed bimodal patterns,peaking at0.43–0.65μm and 4.7–5.8μm,respectively.However,different particle size distributions were found for MAE365,Mbetween diesel and heavy fuel oil ships.Besides,different wavelength dependence in particles with different size were also detected.Ship exhaust could be confirmed as a non-ignorable BrC emission source,and complex influencing factor could affect the light absorption characteristics of ship emissions.Particle size should also be considered when light absorption ability of BrC was evaluated.展开更多
基金This work was financially supported by National Key R&D Plan,Ministry of Science and Technology of China—“Mechanism and chemical process characterization of atmospheric particulate matter multi-isotope fractionation”(Grant No.2017YFC0212703)the program from National Natural Science Foundation of China(Grant No.41773117)the program of Happiness Flower Plan of East China Normal University of China.
文摘Amines are important for new particle formation and subsequent growth in the atmosphere.Consequently,the processes involved are receiving more attention in recent years.Here,we conduct a field observation in order to investigate the atmospheric particulate amines at a background site in the Yangtze River Delta(YRD)during the summer of 2018.Four amines in PM_(2.5),i.e.,methylamine(MA),dimethylamine(DMA),diethylamine(DEA),and trimethylamine(TMA),were collected,twice daily and analyzed.During the campaign,our measurements found the concentrations of MA,DMA,DEA,and TMA of 15.0±15.0,6.3±6.9,20.4±30.1,and 4.0±5.9 ng m^-(3),respectively,and the four amines correlated well with each other.The concentration of amines appear to be independent of whether they were collected during the day or night.Both MA and DMA exhibited a bimodal size distribution that had peaks at 0.67 and 1.1μm,suggesting amines preferably distribute on submicron particles.Boundary layer height(BLH),relative humidity,and pH of aerosols were found have a negative relationship with amines,while aerosol liquid water content(ALWC)was found to have a positive relationship with amines.The PMF(positive matrix factorization)source apportionment results showed that the main source of amines in Chongming Island was of anthropogenic origin such as industrial and biomass emission,followed by marine sources including sea salt and marine biogenic sources.Given that the YRD region is still suffering from complex atmospheric pollution and that the knowledge on aerosol amines is still limited,more field studies are in urgent need for a better understanding of the pollution characteristics of amines.
基金supported by the National Natural Science Foundation of China(Nos.42130704,42077195)the State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex(No.2021080547)the Ministry of Industry and Information Technology of China(No.MC-202019-C08)。
文摘Brown carbon(BrC)is one of the important light absorption substances that have high light absorption ability under short wavelength light.However,limit studies have focused on the BrC emission from ships.In this study,size-segregated particulate matters(PM)were collected from three different types of ships,light absorption characteristics and size distribution of methanol-soluble BrC and water-soluble BrC in PM from ship exhausts were investigated.Results showed that four-stroke low-power diesel fishing boat(4-LDF)had the highest mass concentrations of methanol-soluble organic carbon(MSOC)and water-soluble organic carbon(WSOC),followed by 2-stroke high-power heavy-fuel-oil vessel(2-HHV),and fourstroke high-power marine-diesel vessel(4-HMV).While 2-HHV had obviously higher light absorption coefficients of methanol-soluble BrC(Abs365,M)and water-soluble BrC(Abs365,W)in unit weight of PM than the other two types of ships.The tested ships presented comparable or higher absorption efficiency of BrC in water extracts(MAE365,W)compared with other BrC emission sources.Majority of BrC was concentrated in fine particles,and the particle size distributions of both Abs365,Mand Abs365,Wshowed bimodal patterns,peaking at0.43–0.65μm and 4.7–5.8μm,respectively.However,different particle size distributions were found for MAE365,Mbetween diesel and heavy fuel oil ships.Besides,different wavelength dependence in particles with different size were also detected.Ship exhaust could be confirmed as a non-ignorable BrC emission source,and complex influencing factor could affect the light absorption characteristics of ship emissions.Particle size should also be considered when light absorption ability of BrC was evaluated.