Reconstruction of bone defects,especially the critical-sized defects,with mechanical integrity to the skeleton is important for a patient's rehabilitation,however,it still remains challenge.Utilizing biomaterials ...Reconstruction of bone defects,especially the critical-sized defects,with mechanical integrity to the skeleton is important for a patient's rehabilitation,however,it still remains challenge.Utilizing biomaterials of human origin bone tissue for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural bone tissue with regard to its properties.However,not only efficacious and safe but also costeffective and convenient are important for regenerative biomaterials to achieve clinical translation and commercial success.Advances in our understanding of regenerative biomaterials and their roles in new bone formation potentially opened a new frontier in the fast-growing field of regenerative medicine.Taking inspiration from the role and multicomponent construction of native extracellular matrix(ECM)for cell accommodation,the ECM-mimicking biomaterials and the naturally decellularized ECM scaffolds were used to create new tissues for bone restoration.On the other hand,with the going deep in understanding of mesenchymal stem cells(MSCs),they have shown great promise to jumpstart and facilitate bone healing even in diseased microenvironments with pharmacology-based endogenous MSCs rescue/mobilization,systemic/local infusion of MSCs for cytotherapy,biomaterials-based approaches,cell-sheets/-aggregates technology and usage of subcellular vesicles of MSCs to achieve scaffolds-free or cell-free delivery system,all of them have been shown can improve MSCsmediated regeneration in preclinical studies and several clinical trials.Here,following an overview discussed autogenous/allogenic and ECM-based bone biomaterials for reconstructive surgery and applications of MSCsmediated bone healing and tissue engineering to further offer principles and effective strategies to optimize MSCs-based bone regeneration.展开更多
基金supported by the National Key Research and Development Program of China(2016YFC1101400)the National Natural Science Foundation of China(No.81930025,81620108007,81901010)Open Foundation of Shandong Provincial Key Laboratory of Oral Tissue Regeneration(No.SDKQ201904).
文摘Reconstruction of bone defects,especially the critical-sized defects,with mechanical integrity to the skeleton is important for a patient's rehabilitation,however,it still remains challenge.Utilizing biomaterials of human origin bone tissue for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural bone tissue with regard to its properties.However,not only efficacious and safe but also costeffective and convenient are important for regenerative biomaterials to achieve clinical translation and commercial success.Advances in our understanding of regenerative biomaterials and their roles in new bone formation potentially opened a new frontier in the fast-growing field of regenerative medicine.Taking inspiration from the role and multicomponent construction of native extracellular matrix(ECM)for cell accommodation,the ECM-mimicking biomaterials and the naturally decellularized ECM scaffolds were used to create new tissues for bone restoration.On the other hand,with the going deep in understanding of mesenchymal stem cells(MSCs),they have shown great promise to jumpstart and facilitate bone healing even in diseased microenvironments with pharmacology-based endogenous MSCs rescue/mobilization,systemic/local infusion of MSCs for cytotherapy,biomaterials-based approaches,cell-sheets/-aggregates technology and usage of subcellular vesicles of MSCs to achieve scaffolds-free or cell-free delivery system,all of them have been shown can improve MSCsmediated regeneration in preclinical studies and several clinical trials.Here,following an overview discussed autogenous/allogenic and ECM-based bone biomaterials for reconstructive surgery and applications of MSCsmediated bone healing and tissue engineering to further offer principles and effective strategies to optimize MSCs-based bone regeneration.