RNA-directed DNA methylation(Rd DM) is a plant-specific de novo DNA methylation pathway,which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMO...RNA-directed DNA methylation(Rd DM) is a plant-specific de novo DNA methylation pathway,which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2(SHH2) is an H3 K9 me1 reader. Our structural studies reveal that H3 K9 me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di-and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a monomethyllysine recognition mechanism which potentially links RdDM to H3 K9 me1 in maize.展开更多
Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low effi...Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.展开更多
基金supported by National Natural Science Foundation of China(31770782)the Ministry of Science and Technology of China(2016YFA0503200)+1 种基金the Shenzhen Science and Technology Program(JCYJ20200109110403829 and KQTD20190929173906742)Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes(2019KSYS006)to J.D.
文摘RNA-directed DNA methylation(Rd DM) is a plant-specific de novo DNA methylation pathway,which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2(SHH2) is an H3 K9 me1 reader. Our structural studies reveal that H3 K9 me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di-and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a monomethyllysine recognition mechanism which potentially links RdDM to H3 K9 me1 in maize.
文摘Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.