期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanically conditioned cell sheets cultured on thermo-responsive surfaces promote bone regeneration
1
作者 Gen Wang Zhangqin Yuan +9 位作者 Li Yu Yingkang Yu Pinghui Zhou Genglei Chu Huan Wang Qianping Guo Caihong Zhu fengxuan han Song Chen Bin Li 《Biomaterials Translational》 2023年第1期27-40,I0001-I0003,共17页
Cell sheet-based scaffold-free technology holds promise for tissue engineering applications and has been extensively explored during the past decades.However,efficient harvest and handling of cell sheets remain challe... Cell sheet-based scaffold-free technology holds promise for tissue engineering applications and has been extensively explored during the past decades.However,efficient harvest and handling of cell sheets remain challenging,including insufficient extracellular matrix content and poor mechanical strength.Mechanical loading has been widely used to enhance extracellular matrix production in a variety of cell types.However,currently,there are no effective ways to apply mechanical loading to cell sheets.In this study,we prepared thermo-responsive elastomer substrates by grafting poly(N-isopropyl acrylamide)(PNIPAAm)to poly(dimethylsiloxane)(PDMS)surfaces.The effect of PNIPAAm grafting yields on cell behaviours was investigated to optimize surfaces suitable for cell sheet culturing and harvesting.Subsequently,MC3T3-E1 cells were cultured on the PDMS-g-PNIPAAm substrates under mechanical stimulation by cyclically stretching the substrates.Upon maturation,the cell sheets were harvested by lowering the temperature.We found that the extracellular matrix content and thickness of cell sheet were markedly elevated upon appropriate mechanical conditioning.Reverse transcription quantitative polymerase chain reaction and Western blot analyses further confirmed that the expression of osteogenic-specific genes and major matrix components were up-regulated.After implantation into the critical-sized calvarial defects of mice,the mechanically conditioned cell sheets significantly promoted new bone formation.Findings from this study reveal that thermo-responsive elastomer,together with mechanical conditioning,can potentially be applied to prepare high-quality cell sheets for bone tissue engineering. 展开更多
关键词 cell sheet ECM production mechanical loading OSTEOGENESIS PNIPAAM
原文传递
TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair 被引量:3
2
作者 Qiang Wei Dachuan Liu +7 位作者 Genglei Chu Qifan Yu Zhao Liu Jiaying Li Qingchen Meng Weishan Wang fengxuan han Bin Li 《Bioactive Materials》 SCIE CSCD 2023年第1期581-593,共13页
Annulus fibrosus(AF)repair remains a challenge because of its limited self-healing ability.Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair.Although the unique and be... Annulus fibrosus(AF)repair remains a challenge because of its limited self-healing ability.Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair.Although the unique and beneficial characteristics of decellularized extracellular matrix(ECM)in tissue repair have been demonstrated,the poor mechanical property of ECM hydrogels largely hinders their applications in tissue regeneration.In the present study,we combined polyethylene glycol diacrylate(PEGDA)and decellularized annulus fibrosus matrix(DAFM)to develop an injectable,photocurable hydrogel for AF repair.We found that the addition of PEGDA markedly improved the mechanical strength of DAFM hydrogels while maintaining their porous structure.Transforming growth factor-β1(TGF-β1)was further incorporated into PEGDA/DAFM hydrogels,and it could be continuously released from the hydrogel.The in vitro experiments showed that TGF-β1 facilitated the migration of AF cells.Furthermore,PEGDA/DAFM/TGF-β1 hydrogels supported the adhesion,proliferation,and increased ECM production of AF cells.In vivo repair performance of the hydrogels was assessed using a rat AF defect model.The results showed that the implantation of PEGDA/DAFM/TGF-β1 hydrogels effectively sealed the AF defect,prevented nucleus pulposus atrophy,retained disc height,and partially restored the biomechanical properties of disc.In addition,the implanted hydrogel was infiltrated by cells resembling AF cells and well integrated with adjacent AF tissue.In summary,findings from this study indicate that TGF-β1-supplemented DAFM hydrogels hold promise for AF repair. 展开更多
关键词 Decellularized matrix Annulus fibrosus HYDROGEL TGF-Β1 Tissue repair
原文传递
Building Osteogenic Microenvironments with a Double-Network Composite Hydrogel for Bone Repair 被引量:3
3
作者 Jiaying Li Jinjin Ma +7 位作者 Qian Feng En Xie Qingchen Meng Wenmiao Shu Junxi Wu Liming Bian fengxuan han Bin Li 《Research》 SCIE EI CSCD 2023年第3期319-333,共15页
The critical factor determining the in vivo effect of bone repair materials is the microenvironment,which greatly depends on their abilities to promote vascularization and bone formation.However,implant materials are ... The critical factor determining the in vivo effect of bone repair materials is the microenvironment,which greatly depends on their abilities to promote vascularization and bone formation.However,implant materials are far from ideal candidates for guiding bone regeneration due to their deficient angiogenic and osteogenic microenvironments.Herein,a double-network composite hydrogel combining vascular endothelial growth factor(VEGF)-mimetic peptide with hydroxyapatite(HA)precursor was developed to build an osteogenic microenvironment for bone repair.The hydrogel was prepared by mixing acrylatedβ-cyclodextrins and octacalcium phosphate(OCP),an HA precursor,with gelatin solution,followed by ultraviolet photo-crosslinking.To improve the angiogenic potential of the hydrogel,QK,a VEGF-mimicking peptide,was loaded in acrylatedβ-cyclodextrins.The QK-loaded hydrogel promoted tube formation of human umbilical vein endothelial cells and upregulated the expression of angiogenesis-related genes,such as Flt1,Kdr,and VEGF,in bone marrow mesenchymal stem cells.Moreover,QK could recruit bone marrow mesenchymal stem cells.Furthermore,OCP in the composite hydrogel could be transformed into HA and release calcium ions facilitating bone regeneration.The double-network composite hydrogel integrated QK and OCP showed obvious osteoinductive activity.The results of animal experiments showed that the composite hydrogel enhanced bone regeneration in skull defects of rats,due to perfect synergistic effects of QK and OCP on vascularized bone regeneration.In summary,improving the angiogenic and osteogenic microenvironments by our double-network composite hydrogel shows promising prospects for bone repair. 展开更多
关键词 COMPOSITE loaded INDUCTIVE
原文传递
Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds
4
作者 Ross HMcWilliam Wenlong Chang +7 位作者 Zhao Liu Jiayuan Wang fengxuan han Richard ABlack Junxi Wu Xichun Luo Bin Li Wenmiao Shu 《Biomaterials Translational》 2023年第2期104-114,共11页
There is a high demand for bespoke grafts to replace damaged or malformed bone and cartilage tissue.Three-dimensional(3D)printing offers a method of fabricating complex anatomical features of clinically relevant sizes... There is a high demand for bespoke grafts to replace damaged or malformed bone and cartilage tissue.Three-dimensional(3D)printing offers a method of fabricating complex anatomical features of clinically relevant sizes.However,the construction of a scaffold to replicate the complex hierarchical structure of natural tissues remains challenging.This paper reports a novel biofabrication method that is capable of creating intricately designed structures of anatomically relevant dimensions.The beneficial properties of the electrospun fibre meshes can finally be realised in 3D rather than the current promising breakthroughs in two-dimensional(2D).The 3D model was created from commercially available computer-aided design software packages in order to slice the model down into many layers of slices,which were arrayed.These 2D slices with each layer of a defined pattern were laser cut,and then successfully assembled with varying thicknesses of 100μm or 200μm.It is demonstrated in this study that this new biofabrication technique can be used to reproduce very complex computer-aided design models into hierarchical constructs with micro and nano resolutions,where the clinically relevant sizes ranging from a simple cube of 20 mm dimension,to a more complex,50 mm-tall human ears were created.In-vitro cell-contact studies were also carried out to investigate the biocompatibility of this hierarchal structure.The cell viability on a micromachined electrospun polylactic-co-glycolic acid fibre mesh slice,where a range of hole diameters from 200μm to 500μm were laser cut in an array where cell confluence values of at least 85%were found at three weeks.Cells were also seeded onto a simpler stacked construct,albeit made with micromachined poly fibre mesh,where cells can be found to migrate through the stack better with collagen as bioadhesives.This new method for biofabricating hierarchical constructs can be further developed for tissue repair applications such as maxillofacial bone injury or nose/ear cartilage replacement in the future. 展开更多
关键词 3D biofabrication electrospinning hierarchical scaffold MICROMACHINING tissue engineering
原文传递
3D bioactive composite scaffolds for bone tissue engineering 被引量:41
5
作者 Gareth Turnbull Jon Clarke +5 位作者 Frederic Picard Philip Riches Luanluan Jia fengxuan han Bin Li Wenmiao Shu 《Bioactive Materials》 SCIE 2018年第3期278-314,共37页
Bone is the second most commonly transplanted tissue worldwide,with over four million operations using bone grafts or bone substitute materials annually to treat bone defects.However,significant limitations affect cur... Bone is the second most commonly transplanted tissue worldwide,with over four million operations using bone grafts or bone substitute materials annually to treat bone defects.However,significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma,cancer,infection and arthritis.Developing bioactive three-dimensional(3D)scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering(BTE).A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts.However,individual groups of materials including polymers,ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone.Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds.This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers,hydrogels,metals,ceramics and bio-glasses in BTE.Scaffold fabrication methodology,mechanical performance,biocompatibility,bioactivity,and potential clinical translations will be discussed. 展开更多
关键词 Bioactive composites 3D scaffold 3D printing BIOPRINTING BONE Tissue engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部