Mitochondria are crucial in sustaining and orchestrating cellular functions.Capitalizing on this,we explored mitochondrial transplantation as an innovative therapeutic strategy for acute spinal cord injury(SCI).In our...Mitochondria are crucial in sustaining and orchestrating cellular functions.Capitalizing on this,we explored mitochondrial transplantation as an innovative therapeutic strategy for acute spinal cord injury(SCI).In our study,we developed an engineered mitochondrial compound tailored to target macrophages within the SCI region.Sourced from IL-10-induced Mertkhi bone marrow-derived macrophages,we conjugated a peptide sequence,cations-cysteine-alanine-glutamine-lysine(CAQK),with the mitochondria,optimizing its targeting affinity for the injury site.Our data demonstrated that these compounds significantly enhanced macrophage phagocytosis of myelin debris,curtailed lipid buildup,ameliorated mitochondrial dysfunction,and attenuated pro-inflammatory profiles in macrophages,both in vitro and in vivo.The intravenously delivered mitochondrial compounds targeted the SCI epicenter,with macrophages being the primary recipients.Critically,they promoted tissue regeneration and bolstered functional recovery in SCI mice.This study heralds a transformative approach to mitochondrial transplantation in SCI,spotlighting the modulation of macrophage activity,phagocytosis,and phenotype.展开更多
Thrust prediction of a tunnel boring machine(TBM)is crucial for the life span of disc cutters,cost forecasting,and its design optimization.Many factors affect the thrust of a TBM.The rock pressure on the shield,advanc...Thrust prediction of a tunnel boring machine(TBM)is crucial for the life span of disc cutters,cost forecasting,and its design optimization.Many factors affect the thrust of a TBM.The rock pressure on the shield,advance speed,and cutter water pressure will all have a certain impact.In addition,geological conditions and other random factors will also influence the thrust and greatly increase the difficulty of modeling it,seriously affecting the efficiency of tunnel excavation.To overcome these challenges,this paper establishes a thrust prediction model for the TBM based on the combination of on-site quality record data and surrogate model technology.Firstly,the thrust composition and influencing factors are analyzed and the thrust is modeled using a surrogate model based on field data.After main factor screening based on the Morris method,the accuracy of the surrogate model is greatly improved.The Kriging model with the highest accuracy is selected to model the thrust and predict the thrust of the unexcavated section.The results show that the thrust model has better thrust prediction by selecting similar conditions for modeling and reasonably increasing modeling samples.The thrust prediction method of TBM based on the combination of field data and surrogate model can accurately predict the dynamic thrust of the load and can also accurately estimate its statistical characteristics and effectively improve the excavation plan.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(No.82030071)the National Natural Science Foundation of China(No.82202722,No.81874004)+3 种基金the Science and Technology Major Project of Changsha(No.kh2103008)the Science Foundation of Xiangya Hospital for Young Scholar(Grant No.2021q18)the Natural Science Foundation of Changsha city(Grant No.kq2202378)Graduate students of Central South University independently explore innovative projects(2022ZZTS094).
文摘Mitochondria are crucial in sustaining and orchestrating cellular functions.Capitalizing on this,we explored mitochondrial transplantation as an innovative therapeutic strategy for acute spinal cord injury(SCI).In our study,we developed an engineered mitochondrial compound tailored to target macrophages within the SCI region.Sourced from IL-10-induced Mertkhi bone marrow-derived macrophages,we conjugated a peptide sequence,cations-cysteine-alanine-glutamine-lysine(CAQK),with the mitochondria,optimizing its targeting affinity for the injury site.Our data demonstrated that these compounds significantly enhanced macrophage phagocytosis of myelin debris,curtailed lipid buildup,ameliorated mitochondrial dysfunction,and attenuated pro-inflammatory profiles in macrophages,both in vitro and in vivo.The intravenously delivered mitochondrial compounds targeted the SCI epicenter,with macrophages being the primary recipients.Critically,they promoted tissue regeneration and bolstered functional recovery in SCI mice.This study heralds a transformative approach to mitochondrial transplantation in SCI,spotlighting the modulation of macrophage activity,phagocytosis,and phenotype.
基金supported by the National Natural Science Foundation of China(No.5217052098)the National Key Research and Development Program of China(No.2020YFB2007203).
文摘Thrust prediction of a tunnel boring machine(TBM)is crucial for the life span of disc cutters,cost forecasting,and its design optimization.Many factors affect the thrust of a TBM.The rock pressure on the shield,advance speed,and cutter water pressure will all have a certain impact.In addition,geological conditions and other random factors will also influence the thrust and greatly increase the difficulty of modeling it,seriously affecting the efficiency of tunnel excavation.To overcome these challenges,this paper establishes a thrust prediction model for the TBM based on the combination of on-site quality record data and surrogate model technology.Firstly,the thrust composition and influencing factors are analyzed and the thrust is modeled using a surrogate model based on field data.After main factor screening based on the Morris method,the accuracy of the surrogate model is greatly improved.The Kriging model with the highest accuracy is selected to model the thrust and predict the thrust of the unexcavated section.The results show that the thrust model has better thrust prediction by selecting similar conditions for modeling and reasonably increasing modeling samples.The thrust prediction method of TBM based on the combination of field data and surrogate model can accurately predict the dynamic thrust of the load and can also accurately estimate its statistical characteristics and effectively improve the excavation plan.