期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simplified three-dimensional culture system for long-term expansion of embryonic stem cells 被引量:2
1
作者 Christina McKee Mick Perez-Cruet +1 位作者 ferman chavez G Rasul Chaudhry 《World Journal of Stem Cells》 SCIE CAS 2015年第7期1064-1077,共14页
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow ... AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels(P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury(mesoderm), NCAM(ectoderm), and GATA4(endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively. CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation. 展开更多
关键词 THREE-DIMENSIONAL CULTURE PLURIPOTENCY EMBRYONIC s
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部