The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty...The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty amines of high molecular weight, polyoxylated amines, amides, imidazolines, nitrogen heterocyclic products, etc. The potential advantages of the use of silicates are the effective protection of carbon steel, especially in aerated saline fluids, low costs and non-aggressive behavior to environment. Gravimetric and electrochemical tests were carried out using an aerated solution of 3.5% NaCl and the addition of sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O) as a corrosion inhibitor at concentrations of 250 to 2000 mg/L. The efficiencies of the corrosion protection of carbon steel using silicate concentrations greater than 1250 mg/L were greater than 92%.展开更多
The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air q...The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air quality with consequences including the development of lung diseases in the surrounding population, the generation of acid rain and damage to civil constructions, such as public buildings, public squares, historic monuments, bridges, etc. This article describes the mechanisms of corrosion that occur in reinforced concrete deterioration observed in an industrial plant by the action of direct emissions of sulfur dioxide. SO2 in this case study is from the burning of fuel oil high sulfur content from chimney of an industrial boiler. The deterioration of concrete was evaluated in the laboratory showing the formation of calcium sulfate and calcium sulfate hydrate associated with aluminum oxide (Al2O3) and calcium oxide (CaO).展开更多
The present study aims to treat some aspects of environmental contamination under the focus of the principle of precaution, which is based on ideas and discussion about the concerns of society regarding ethics, the en...The present study aims to treat some aspects of environmental contamination under the focus of the principle of precaution, which is based on ideas and discussion about the concerns of society regarding ethics, the environment, water resources, the risk of contamination, and the uncertainties of technological applications in all areas of human knowledge. In the assessment of these scenarios it was decided to evaluate, under a critical view, the chemicals used in the treatment of drinking water, which could cause health problems, directly or indirectly, in the population. Some samples of commercial aluminium sulphate were analysed, concluding that there was a need for physical and chemical assessments to identify the origins of the raw materials used in its manufacturing process.展开更多
Industrial effluents containing cobalt ions have become a serious problem for the environment, unless properly treated, due to their toxic potential. Currently there has been an intensification of the use of cobalt in...Industrial effluents containing cobalt ions have become a serious problem for the environment, unless properly treated, due to their toxic potential. Currently there has been an intensification of the use of cobalt in several industrial sectors as super alloys, catalysts, batteries and pigments in ceramic materials, and a consequent intensification also of environmental contamination. This paper aims to show a simple and effective treatment for the removal of cobalt ions from simulated industrial wastewater, based on cathodic eletrolytic removal using a carbon steel screen. As a result, a 73% removal of cobalt ions from solutions was achieved with a concentration of 400 mg Co<sup>2+</sup>/L, a current of 0.30 A and a voltage of 30 V. In the same conditions, 84% and 88% was removed from 200 mg Co<sup>2+</sup>/L and 100 mg Co<sup>2+</sup>/L, respectively. Thus, this method presents itself as a cheap and efficient alternative for the treatment of industrial effluents containing cobalt ions.展开更多
Currently, Living Wall Systems (LWSs) are assuming great importance in the built environment, due to environmental and aesthetic advantages, as well as the use of urban residual space and underutilized surfaces of bui...Currently, Living Wall Systems (LWSs) are assuming great importance in the built environment, due to environmental and aesthetic advantages, as well as the use of urban residual space and underutilized surfaces of buildings. However, the maintenance and the durability of the materials used have been a challenge for architects and professionals in the field. The aim of this paper is to evaluate the anti-corrosion performance of a steel framing profile, galvanized carbon steel (55% Al-Zn), a sustainable material with easy assembly, to apply LWS in the hot and humid tropical climate of Niterói (Rio de Janeiro, Brazil). In order to create the conditions of the tests, “X” cut were made in Al-Zn coating, sanding, and application of epoxy and glass fiber-reinforced polyester. After the experiments that lasted four months, the 55% Al-Zn coating was analyzed using Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of the tests were promising for the use of this galvanized steel for application as a support for green vertical facades. 55% Al-Zn coatings are recommended for marine atmospheres due to their good anti-corrosion performance.展开更多
The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to st...The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.展开更多
The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme elim...The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.展开更多
The corrosion resistance of nickel-phosphorus (Ni-P) coatings and their mechanical properties in seawater have led inestigations into the development of new technologies and the replacement of some special alloys in e...The corrosion resistance of nickel-phosphorus (Ni-P) coatings and their mechanical properties in seawater have led inestigations into the development of new technologies and the replacement of some special alloys in equipment used in oil production, such as valves, tubing, sucker rod joints, pumps, riser, manifolds and subsea Christmas trees. These studies began with Brenner and Riddel who developed, in the 1940s, formulations for Ni-P deposition on carbon steel without using an electric current. Joint deposition of nickel and phosphorus on a metallic surface (carbon steel) without applying an external current is accomplished using cathodic reduction with hydrogen (H) from a reducing agent (sodium hypophosphite) and nickel salts. To assure good performance of a Ni-P coating, the deposit quality must be inspected and evaluated during the chemical deposition process or in the end product. The recommended test parameters are: thickness, layer uniformity, hardness, adhesion, porosity, corrosion resistance and chemical composition of the nickel-phosphorus coating. The purpose of this paper was to investigate the Ni-P coating process, to evaluate the b?haviour of Ni-P in a saline environment using aqueous brine (3.5% - 30% sodium chloride by mass) and to present possible defects that could compromise the coating.展开更多
文摘The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty amines of high molecular weight, polyoxylated amines, amides, imidazolines, nitrogen heterocyclic products, etc. The potential advantages of the use of silicates are the effective protection of carbon steel, especially in aerated saline fluids, low costs and non-aggressive behavior to environment. Gravimetric and electrochemical tests were carried out using an aerated solution of 3.5% NaCl and the addition of sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O) as a corrosion inhibitor at concentrations of 250 to 2000 mg/L. The efficiencies of the corrosion protection of carbon steel using silicate concentrations greater than 1250 mg/L were greater than 92%.
文摘The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air quality with consequences including the development of lung diseases in the surrounding population, the generation of acid rain and damage to civil constructions, such as public buildings, public squares, historic monuments, bridges, etc. This article describes the mechanisms of corrosion that occur in reinforced concrete deterioration observed in an industrial plant by the action of direct emissions of sulfur dioxide. SO2 in this case study is from the burning of fuel oil high sulfur content from chimney of an industrial boiler. The deterioration of concrete was evaluated in the laboratory showing the formation of calcium sulfate and calcium sulfate hydrate associated with aluminum oxide (Al2O3) and calcium oxide (CaO).
文摘The present study aims to treat some aspects of environmental contamination under the focus of the principle of precaution, which is based on ideas and discussion about the concerns of society regarding ethics, the environment, water resources, the risk of contamination, and the uncertainties of technological applications in all areas of human knowledge. In the assessment of these scenarios it was decided to evaluate, under a critical view, the chemicals used in the treatment of drinking water, which could cause health problems, directly or indirectly, in the population. Some samples of commercial aluminium sulphate were analysed, concluding that there was a need for physical and chemical assessments to identify the origins of the raw materials used in its manufacturing process.
文摘Industrial effluents containing cobalt ions have become a serious problem for the environment, unless properly treated, due to their toxic potential. Currently there has been an intensification of the use of cobalt in several industrial sectors as super alloys, catalysts, batteries and pigments in ceramic materials, and a consequent intensification also of environmental contamination. This paper aims to show a simple and effective treatment for the removal of cobalt ions from simulated industrial wastewater, based on cathodic eletrolytic removal using a carbon steel screen. As a result, a 73% removal of cobalt ions from solutions was achieved with a concentration of 400 mg Co<sup>2+</sup>/L, a current of 0.30 A and a voltage of 30 V. In the same conditions, 84% and 88% was removed from 200 mg Co<sup>2+</sup>/L and 100 mg Co<sup>2+</sup>/L, respectively. Thus, this method presents itself as a cheap and efficient alternative for the treatment of industrial effluents containing cobalt ions.
文摘Currently, Living Wall Systems (LWSs) are assuming great importance in the built environment, due to environmental and aesthetic advantages, as well as the use of urban residual space and underutilized surfaces of buildings. However, the maintenance and the durability of the materials used have been a challenge for architects and professionals in the field. The aim of this paper is to evaluate the anti-corrosion performance of a steel framing profile, galvanized carbon steel (55% Al-Zn), a sustainable material with easy assembly, to apply LWS in the hot and humid tropical climate of Niterói (Rio de Janeiro, Brazil). In order to create the conditions of the tests, “X” cut were made in Al-Zn coating, sanding, and application of epoxy and glass fiber-reinforced polyester. After the experiments that lasted four months, the 55% Al-Zn coating was analyzed using Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of the tests were promising for the use of this galvanized steel for application as a support for green vertical facades. 55% Al-Zn coatings are recommended for marine atmospheres due to their good anti-corrosion performance.
文摘The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.
文摘The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.
文摘The corrosion resistance of nickel-phosphorus (Ni-P) coatings and their mechanical properties in seawater have led inestigations into the development of new technologies and the replacement of some special alloys in equipment used in oil production, such as valves, tubing, sucker rod joints, pumps, riser, manifolds and subsea Christmas trees. These studies began with Brenner and Riddel who developed, in the 1940s, formulations for Ni-P deposition on carbon steel without using an electric current. Joint deposition of nickel and phosphorus on a metallic surface (carbon steel) without applying an external current is accomplished using cathodic reduction with hydrogen (H) from a reducing agent (sodium hypophosphite) and nickel salts. To assure good performance of a Ni-P coating, the deposit quality must be inspected and evaluated during the chemical deposition process or in the end product. The recommended test parameters are: thickness, layer uniformity, hardness, adhesion, porosity, corrosion resistance and chemical composition of the nickel-phosphorus coating. The purpose of this paper was to investigate the Ni-P coating process, to evaluate the b?haviour of Ni-P in a saline environment using aqueous brine (3.5% - 30% sodium chloride by mass) and to present possible defects that could compromise the coating.