Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI meas...Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI measure. One potential mechanism for the decreased grey matter MTR (GM MTR) observed is trans-synaptic morphological abnormality secondary to demyelinating lesions that are in an anatomically linked pathway but remote location. We investigated this potential association by studying the location of abnormalities using voxel-based analysis of GM MTR maps in a group of 80 patients studied within 6 months of presenting with isolated optic neuritis and compared the findings with those seen in 50 age-and sex-matched healthy controls. Occipital cortex and whole brain analysis comparing all optic neuritis patients and controls revealed a selective decrease of MTR bilaterally in the visual cortex in patients [Brodmann area (BA) 17]. Whole brain analysis of patients fulfilling the McDonald criteria for multiple sclerosis (n=20) showed a lower MTR compared to controls bilaterally in the visual cortex (BA 17/18), left hippocampus, bilateral superior temporal gyrus, bilateral lenticular nuclei and the right cerebellum. There was no significant difference in the percentage of grey matter between patients and controls in the regions of abnormal MTR detected in the visual cortex. The intrinsic MTR decrease seen in patients suggests that there are structural changes in the visual cortex following an attack of optic neuritis. Potential mechanisms for this include trans-synaptic neuronal degeneration and cortical synaptic morphological changes; such abnormalities may also contribute to MTR abnormalities observed in the normal appearing grey matter in multiple sclerosis.展开更多
Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI meas...Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI measure. One potential mechanism for the decreased grey matter MTR (GM MTR) observed is trans-synaptic morphological abnormality secondary to demyelinating lesions that are in an anatomically linked pathway but remote location. We investigated this potential association by studying the location of abnormalities using voxel-based analysis of GM MTR maps in a group of 80 patients studied within 6 months of presenting with isolated optic neuritis and compared the findings with those seen in 50 age-and sex-matched healthy controls. Occipital cortex and whole brain analysis comparing all optic neuritis patients and controls revealed a selective decrease of MTR bilaterally in the visual cortex in patients [Brodmann area (BA) 17]. Whole brain analysis of patients fulfilling the McDonald criteria for multiple sclerosis (n = 20) showed a lower MTR compared to controls bilaterally in the visual cortex (BA 17/18), left hippocampus, bilateral superior temporal gyrus, bilateral lenticular nuclei and the right cerebellum. There was no significant difference in the percentage of grey matter between patients and controls in the regions of abnormal MTR detected in the visual cortex. The intrinsic MTR decrease seen in patients suggests that there are structural changes in the visual cortex following an attack of optic neuritis. Potential mechanisms for this include trans-synaptic neuronal degeneration and cortical synaptic morphological changes; such abnormalities may also contribute to MTR abnormalities observed in the normal appearing grey matter in multiple sclerosis.展开更多
In established multiple sclerosis, magnetization transfer ratio (MTR) histograms reveal abnormalities of normal-appearing white matter (NAWM) and grey matter (NAGM). The aim of this study was to investigate for such a...In established multiple sclerosis, magnetization transfer ratio (MTR) histograms reveal abnormalities of normal-appearing white matter (NAWM) and grey matter (NAGM). The aim of this study was to investigate for such abnormalities in a large cohort of patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Magnetization transfer imaging was performed on 100 patients (67 women, 33 men, median age 32 years) a mean of 19 weeks (SD 3.8, range 12-33 weeks) after symptom onset with a clinically isolated syndrome and in 50 healthy controls (34 women, 16 men, median age 32.5 years). SPM99 software was used to generate segmented NAWM and NAGM MTR maps. The volumes of T2 lesions, white matter and grey matter were calculated. Eighty-one patients were followed up clinically and with conventional MRI after 3 years (n = 61) or until they developed multiple sclerosis if this occurred sooner (n = 20). Multiple regression analysis was used to investigate differences between patients and controls with age, gender and volume measures as covariates to control for potential confounding effects. The MTR histograms for both NAWM and NAGM showed a reduction in the mean (NAWM, 38.14 versus 38.33, P = 0.001; NAGM 32.29 versus 32.50, P = 0.009; units in pu) and peak location, with a left shift in the histogram. Mean NAWM and NAG M MTR were also reduced in the patients who developed clinically definite multiple sclerosis and multiple sclerosis according to the McDonald criteria but not in the 24 patients with normal T 2-weighted brain magnetic resonance imaging (MRI). MTR abnormalities occur in the NAWM and NAGM at the earliest clinical stages of multiple sclerosis.展开更多
文摘Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI measure. One potential mechanism for the decreased grey matter MTR (GM MTR) observed is trans-synaptic morphological abnormality secondary to demyelinating lesions that are in an anatomically linked pathway but remote location. We investigated this potential association by studying the location of abnormalities using voxel-based analysis of GM MTR maps in a group of 80 patients studied within 6 months of presenting with isolated optic neuritis and compared the findings with those seen in 50 age-and sex-matched healthy controls. Occipital cortex and whole brain analysis comparing all optic neuritis patients and controls revealed a selective decrease of MTR bilaterally in the visual cortex in patients [Brodmann area (BA) 17]. Whole brain analysis of patients fulfilling the McDonald criteria for multiple sclerosis (n=20) showed a lower MTR compared to controls bilaterally in the visual cortex (BA 17/18), left hippocampus, bilateral superior temporal gyrus, bilateral lenticular nuclei and the right cerebellum. There was no significant difference in the percentage of grey matter between patients and controls in the regions of abnormal MTR detected in the visual cortex. The intrinsic MTR decrease seen in patients suggests that there are structural changes in the visual cortex following an attack of optic neuritis. Potential mechanisms for this include trans-synaptic neuronal degeneration and cortical synaptic morphological changes; such abnormalities may also contribute to MTR abnormalities observed in the normal appearing grey matter in multiple sclerosis.
文摘Patients with clinically isolated syndromes suggestive of multiple sclerosis have evidence for abnormality in normal appearing grey matter detected using the magnetization transfer ratio (MTR), a quantitative MRI measure. One potential mechanism for the decreased grey matter MTR (GM MTR) observed is trans-synaptic morphological abnormality secondary to demyelinating lesions that are in an anatomically linked pathway but remote location. We investigated this potential association by studying the location of abnormalities using voxel-based analysis of GM MTR maps in a group of 80 patients studied within 6 months of presenting with isolated optic neuritis and compared the findings with those seen in 50 age-and sex-matched healthy controls. Occipital cortex and whole brain analysis comparing all optic neuritis patients and controls revealed a selective decrease of MTR bilaterally in the visual cortex in patients [Brodmann area (BA) 17]. Whole brain analysis of patients fulfilling the McDonald criteria for multiple sclerosis (n = 20) showed a lower MTR compared to controls bilaterally in the visual cortex (BA 17/18), left hippocampus, bilateral superior temporal gyrus, bilateral lenticular nuclei and the right cerebellum. There was no significant difference in the percentage of grey matter between patients and controls in the regions of abnormal MTR detected in the visual cortex. The intrinsic MTR decrease seen in patients suggests that there are structural changes in the visual cortex following an attack of optic neuritis. Potential mechanisms for this include trans-synaptic neuronal degeneration and cortical synaptic morphological changes; such abnormalities may also contribute to MTR abnormalities observed in the normal appearing grey matter in multiple sclerosis.
文摘In established multiple sclerosis, magnetization transfer ratio (MTR) histograms reveal abnormalities of normal-appearing white matter (NAWM) and grey matter (NAGM). The aim of this study was to investigate for such abnormalities in a large cohort of patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Magnetization transfer imaging was performed on 100 patients (67 women, 33 men, median age 32 years) a mean of 19 weeks (SD 3.8, range 12-33 weeks) after symptom onset with a clinically isolated syndrome and in 50 healthy controls (34 women, 16 men, median age 32.5 years). SPM99 software was used to generate segmented NAWM and NAGM MTR maps. The volumes of T2 lesions, white matter and grey matter were calculated. Eighty-one patients were followed up clinically and with conventional MRI after 3 years (n = 61) or until they developed multiple sclerosis if this occurred sooner (n = 20). Multiple regression analysis was used to investigate differences between patients and controls with age, gender and volume measures as covariates to control for potential confounding effects. The MTR histograms for both NAWM and NAGM showed a reduction in the mean (NAWM, 38.14 versus 38.33, P = 0.001; NAGM 32.29 versus 32.50, P = 0.009; units in pu) and peak location, with a left shift in the histogram. Mean NAWM and NAG M MTR were also reduced in the patients who developed clinically definite multiple sclerosis and multiple sclerosis according to the McDonald criteria but not in the 24 patients with normal T 2-weighted brain magnetic resonance imaging (MRI). MTR abnormalities occur in the NAWM and NAGM at the earliest clinical stages of multiple sclerosis.