In this paper, we use a modified path simulation method for valuation of Asian American Options. This method is a modification of the path simulation model proposed by Tiley. We assume that the behavior of the log ret...In this paper, we use a modified path simulation method for valuation of Asian American Options. This method is a modification of the path simulation model proposed by Tiley. We assume that the behavior of the log return of the underlying assets follows the Variance Gamma (VG) process, since its distribution is heavy tail and leptokurtic. We provide sensitivity analysis of this method and compare the obtained prices to Asian European option prices.展开更多
Geometric Brownian Motion (GBM) is widely used to model the asset price dynamics. Option price models such as the Black-Sholes and the binomial tree models rely on the assumption that the underlying asset price dynami...Geometric Brownian Motion (GBM) is widely used to model the asset price dynamics. Option price models such as the Black-Sholes and the binomial tree models rely on the assumption that the underlying asset price dynamics follow the GBM. Modeling the asset price dynamics by using the GBM implies that the log return of assets at particular time is normally distributed. Many studies on real data in the markets showed that the GBM fails to capture the characteristic features of asset price dynamics that exhibit heavy tails and excess kurtosis. In our study, a class of Levy process, which is called a variance gamma (VG) process, performs much better than GBM model for modeling the dynamics of those stock indices. However, valuation of financial instruments, e.g. options, under the VG process has not been well developed. Here, we propose a new approach to the valuation of European option. It is based on the conditional distribution of the VG process. We also apply the path simulation model to value American options by assuming the underlying asset log return follow the VG process. Such a model is similar with that proposed by Tiley [1]. Simulation study shows that the proposed method performs well in term of the option price.展开更多
文摘In this paper, we use a modified path simulation method for valuation of Asian American Options. This method is a modification of the path simulation model proposed by Tiley. We assume that the behavior of the log return of the underlying assets follows the Variance Gamma (VG) process, since its distribution is heavy tail and leptokurtic. We provide sensitivity analysis of this method and compare the obtained prices to Asian European option prices.
文摘Geometric Brownian Motion (GBM) is widely used to model the asset price dynamics. Option price models such as the Black-Sholes and the binomial tree models rely on the assumption that the underlying asset price dynamics follow the GBM. Modeling the asset price dynamics by using the GBM implies that the log return of assets at particular time is normally distributed. Many studies on real data in the markets showed that the GBM fails to capture the characteristic features of asset price dynamics that exhibit heavy tails and excess kurtosis. In our study, a class of Levy process, which is called a variance gamma (VG) process, performs much better than GBM model for modeling the dynamics of those stock indices. However, valuation of financial instruments, e.g. options, under the VG process has not been well developed. Here, we propose a new approach to the valuation of European option. It is based on the conditional distribution of the VG process. We also apply the path simulation model to value American options by assuming the underlying asset log return follow the VG process. Such a model is similar with that proposed by Tiley [1]. Simulation study shows that the proposed method performs well in term of the option price.