Williams syndrome (WS) is a genetic disorder caused by a heterozygous contiguous gene deletion on chromosome 7q11.23. Clinical features of the disease include low IQ and deficit in some cog- nitive domains, and the pr...Williams syndrome (WS) is a genetic disorder caused by a heterozygous contiguous gene deletion on chromosome 7q11.23. Clinical features of the disease include low IQ and deficit in some cog- nitive domains, and the presence of relatively strong abilities in social drive, face processing, language, and musical skills. The presence of a strong predisposition to the development of musicality in individuals affected by WS leads us to suppose that some genes deleted in this syndrome are somehow involved in the evolution of this ability, and that these genes could act in normal conditions as “suppressors of music ability”. To test this hypothesis, we carried out an “in silico” analysis by using the Ingenuity Pathway Analysis (IPA) software to identify the interaction between genes mapped in the WS critical region and genes previously related to musical ability by literature data. This approach allowed us to identify 3 networks of interaction, involving AVPR1A, NCF1, UNC5C and LAT2 in the first network, STX1A and SLC6A4 in the second one and only WS related genes in the last one. Among these associations, the one involving STX1A and SLC6A4 suggested a possible mechanism of interaction was based on the influence played by STX1A deletion on the serotonin levels through a decrease of SLC6A4 activity.展开更多
文摘Williams syndrome (WS) is a genetic disorder caused by a heterozygous contiguous gene deletion on chromosome 7q11.23. Clinical features of the disease include low IQ and deficit in some cog- nitive domains, and the presence of relatively strong abilities in social drive, face processing, language, and musical skills. The presence of a strong predisposition to the development of musicality in individuals affected by WS leads us to suppose that some genes deleted in this syndrome are somehow involved in the evolution of this ability, and that these genes could act in normal conditions as “suppressors of music ability”. To test this hypothesis, we carried out an “in silico” analysis by using the Ingenuity Pathway Analysis (IPA) software to identify the interaction between genes mapped in the WS critical region and genes previously related to musical ability by literature data. This approach allowed us to identify 3 networks of interaction, involving AVPR1A, NCF1, UNC5C and LAT2 in the first network, STX1A and SLC6A4 in the second one and only WS related genes in the last one. Among these associations, the one involving STX1A and SLC6A4 suggested a possible mechanism of interaction was based on the influence played by STX1A deletion on the serotonin levels through a decrease of SLC6A4 activity.