We introduce the concept of transmission eigenvalues in scattering theory for automorphic forms on fundamental domains generated by discrete groups acting on the hyperbolic upper half complex plane. In particular, we ...We introduce the concept of transmission eigenvalues in scattering theory for automorphic forms on fundamental domains generated by discrete groups acting on the hyperbolic upper half complex plane. In particular, we consider Fuchsian groups of Type Ⅰ. Transmission eigenvalues are related to those eigen-parameters for which one can send an incident wave that produces no scattering. The notion of transmission eigenvalues, or non-scattering energies, is well studied in the Euclidean geometry, where in some cases these eigenvalues appear as zeros of the scattering matrix. As opposed to scattering poles,in hyperbolic geometry such a connection between zeros of the scattering matrix and non-scattering energies is not studied, and the goal of this paper is to do just this for particular arithmetic groups.For such groups, using existing deep results from analytic number theory, we reveal that the zeros of the scattering matrix, consequently non-scattering energies, are directly expressed in terms of the zeros of the Riemann zeta function. Weyl's asymptotic laws are provided for the eigenvalues in those cases along with estimates on their location in the complex plane.展开更多
基金Supported by AFOSR(Grant No.FA9550-17-1-0147)NSF(Grant No.DMS-1813492)
文摘We introduce the concept of transmission eigenvalues in scattering theory for automorphic forms on fundamental domains generated by discrete groups acting on the hyperbolic upper half complex plane. In particular, we consider Fuchsian groups of Type Ⅰ. Transmission eigenvalues are related to those eigen-parameters for which one can send an incident wave that produces no scattering. The notion of transmission eigenvalues, or non-scattering energies, is well studied in the Euclidean geometry, where in some cases these eigenvalues appear as zeros of the scattering matrix. As opposed to scattering poles,in hyperbolic geometry such a connection between zeros of the scattering matrix and non-scattering energies is not studied, and the goal of this paper is to do just this for particular arithmetic groups.For such groups, using existing deep results from analytic number theory, we reveal that the zeros of the scattering matrix, consequently non-scattering energies, are directly expressed in terms of the zeros of the Riemann zeta function. Weyl's asymptotic laws are provided for the eigenvalues in those cases along with estimates on their location in the complex plane.