Coaxial electrospinning process was used to produce biodegradable membranes made of coreshell fibers of a poly(lactic acid) (PLA) shell and a poly(vinyl alcohol) (PVA) core. Scanning electron microscopy analyses of th...Coaxial electrospinning process was used to produce biodegradable membranes made of coreshell fibers of a poly(lactic acid) (PLA) shell and a poly(vinyl alcohol) (PVA) core. Scanning electron microscopy analyses of these structures showed that the PLA shell can present certain porosity depending on the process condition. FTIR-ATR and contact angle measurements also suggested imprisonment of the PVA core within the PLA shell. This type of structure was also confirmed by means of transmissions electron microscopy. The morphology of these fibers was dependent on the flow rate of both core and shell solutions, and homogeneous and smooth surface was only attained when the flow rate of the external PLA solution was 4 times the flow rate of the internal PVA solution. The increase in the PLA solution flow rate increases the diameter of the core-shell fiber which reaches up to 1.7 μm. Nevertheless, fibers with smaller average diameter could also be produced (200 nm). These core-shell fibers presented improved hydrophilicity as compared with monolithic PLA fibers.展开更多
基金the Brazilian Agencies CNPq,CAPES and FAPERJ for supporting this work
文摘Coaxial electrospinning process was used to produce biodegradable membranes made of coreshell fibers of a poly(lactic acid) (PLA) shell and a poly(vinyl alcohol) (PVA) core. Scanning electron microscopy analyses of these structures showed that the PLA shell can present certain porosity depending on the process condition. FTIR-ATR and contact angle measurements also suggested imprisonment of the PVA core within the PLA shell. This type of structure was also confirmed by means of transmissions electron microscopy. The morphology of these fibers was dependent on the flow rate of both core and shell solutions, and homogeneous and smooth surface was only attained when the flow rate of the external PLA solution was 4 times the flow rate of the internal PVA solution. The increase in the PLA solution flow rate increases the diameter of the core-shell fiber which reaches up to 1.7 μm. Nevertheless, fibers with smaller average diameter could also be produced (200 nm). These core-shell fibers presented improved hydrophilicity as compared with monolithic PLA fibers.