Carbon dioxide (CO2) is one of the most abundant anthropogenic greenhouse gases contributing to increase air temperature. Urban areas covered by parks, gardens, tree-lined avenues, sports fields, and hedges are import...Carbon dioxide (CO2) is one of the most abundant anthropogenic greenhouse gases contributing to increase air temperature. Urban areas covered by parks, gardens, tree-lined avenues, sports fields, and hedges are important sinks for CO2. Urban green areas should include the Botanical Gardens, taking into consideration their key role in ex situ plant conservation as well as air quality amelioration and social benefits. In such context, the CO2 sequestration capability of the most representative plant collections developing in the Botanical Garden of Rome and their influence on microclimate was analyzed. Our results highlight that plant collections have a CO2 sequestration capability of 6947 Mg CO2 year-1. The CO2 sequestration capability and air temperature lowering by plant collections growing in the Botanical Garden have positive effects (p ≤ 0.05) on the surrounding area resulting in 4% CO2 concentration and 1°C air temperature decreasing at 150 m from the centre of the Garden.展开更多
文摘Carbon dioxide (CO2) is one of the most abundant anthropogenic greenhouse gases contributing to increase air temperature. Urban areas covered by parks, gardens, tree-lined avenues, sports fields, and hedges are important sinks for CO2. Urban green areas should include the Botanical Gardens, taking into consideration their key role in ex situ plant conservation as well as air quality amelioration and social benefits. In such context, the CO2 sequestration capability of the most representative plant collections developing in the Botanical Garden of Rome and their influence on microclimate was analyzed. Our results highlight that plant collections have a CO2 sequestration capability of 6947 Mg CO2 year-1. The CO2 sequestration capability and air temperature lowering by plant collections growing in the Botanical Garden have positive effects (p ≤ 0.05) on the surrounding area resulting in 4% CO2 concentration and 1°C air temperature decreasing at 150 m from the centre of the Garden.