期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Contribution of Satellite Observations in the Optical and Microphysical Characterization of Aerosols in Burkina Faso, West Africa
1
作者 Nébon Bado Serge Dimitri Bazyomo +4 位作者 Germain Wende pouiré Ouedraogo Bruno Korgo Mamadou Simina Dramé florent p. kieno Sié Kam 《Atmospheric and Climate Sciences》 2024年第1期154-171,共18页
In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitori... In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer. 展开更多
关键词 AERONET Airborne Sensors AEROSOL Optical and Microphysical Properties
下载PDF
Comparative Study of the Thermal and Mechanical Properties of Foamed Concrete with Local Materials
2
作者 Adelaïde Lareba Ouédraogo Sayouba Kabré +8 位作者 Etienne Malbila Abdoulaye Compaoré Ramatou Saré paul Ilboudo Sié Kam Bruno Korgo Dieudonné Joseph Bathiebo florent p. kieno philippe Blanchard 《World Journal of Engineering and Technology》 2022年第3期550-564,共15页
Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal dis... Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings. 展开更多
关键词 Foamed Concrete Thermo-Mechanical Properties COMPARISON Local Materi-als
下载PDF
Vertical Profile of Wind Speed in the Atmospheric Boundary Layer and Assessment of Wind Resource on the Bobo Dioulasso Site in Burkina Faso 被引量:1
3
作者 Drissa Boro Hagninou Elagnon Venance Donnou +3 位作者 Imbga Kossi Nebon Bado florent p. kieno Joseph Bathiebo 《Smart Grid and Renewable Energy》 2019年第11期257-278,共22页
This study investigates both the characteristics of the vertical wind profile at the Bobo Dioulasso site located in the Sudanian climate zone in Burkina Faso during a day and night convective wind cycle and the estima... This study investigates both the characteristics of the vertical wind profile at the Bobo Dioulasso site located in the Sudanian climate zone in Burkina Faso during a day and night convective wind cycle and the estimation and variability of the wind resource. Wind data at 10 m above ground level and satellite data at 50 m altitude in the atmospheric boundary layer were used for the period going from January 2006 to December 2016. Based on Monin-Obukhov theory, the logarithmic law and the power law made it possible to characterize the wind profile. On the study site, the atmosphere is generally unstable from 10:00 to 18:00 and stable during the other periods of the day. Wind extrapolation models were tested on our study site. Fitting equations proposed are always in agreement with the data, contrary to other models assessed. Based on these equations, the profile of a day and night cycle wind cycle was established by extrapolation of wind data measured at 10 m above the ground. Lastly, the model of the power law based on the stability was used to generate data on wind speed from 20 m to 50 m based on data from 10 m above the ground. Weibull function was used to characterize wind speed rate distribution and to calculate wind energy potential. The average annual power density on the site is estimated at 53.13 W/m2 at 20 m and at 84.05 W/m2 at 50 m, or 36.78% increase. Considering these results, the Bobo-Dioulasso site could be appropriate to build small and medium-size turbines to supply the rural communities of the Bobo Dioulasso region with electricity. 展开更多
关键词 WIND POTENTIAL Weibull DISTRIBUTION Power DENSITY VERTICAL Profil VERTICAL
下载PDF
Climatological Analysis of Aerosols Optical Properties by Airborne Sensors and in Situ Measurements in West Africa: Case of the Sahelian Zone
4
作者 Nébon Bado Adama Ouédraogo +7 位作者 Hassime Guengané Thierry Sikoudouin Maurice Ky Serge Dimitri Bazyomo Bruno Korgo Mamadou Simina Dramé Saidou Moustapha Sall florent p. kieno Dieudonné Joseph Bathiebo 《Open Journal of Air Pollution》 2019年第4期118-135,共18页
This paper deals with the climatology of aerosols in West Africa based on satellite and in situ measurements between 2001 and 2016 and covers four sites in the Sahelian zone. There are indeed Banizoumbou (13.541&d... This paper deals with the climatology of aerosols in West Africa based on satellite and in situ measurements between 2001 and 2016 and covers four sites in the Sahelian zone. There are indeed Banizoumbou (13.541&deg;N, 02.665&deg;E), Cinzana (13.278&deg;N, 05.934&deg;W), Dakar (14.394&deg;N, 16.959&deg;W) and Ouagadougou (12.20&deg;N, 1.40&deg;W) located respectively in Niger, Mali, Senegal and Burkina Faso. Thus, an intercomparison between the satellite observations and the in situ measurements shows a good correlation between MODIS and AERONET with a correlation coefficient R = 0.86 at Cinzana, R = 0.85 at Banizounbou, R = 0.84 at Ouagadougou and a low correlation coefficient R = 0.66 calculated on the Dakar site. Like MODIS, SeaWiFS shows a very good correspondence with measurements of the ground photometer especially for Banizoumbou (R = 0.89), Cinzana (R = 0.88) and Dakar (R = 0.75) followed by a low correlation coefficient calculated on the Ouagadougou site (R = 0.64). The performance of these airborne sensors is also corroborated by the calculation of root mean square error (RMSE) and the mean absolute error (MAE). Following this validation, a climatological analysis based on aerosol optical depth (AOD) shows the seasonality of aerosols in West Africa strongly influenced by the climate dynamics illustrated by the MERRA model reanalysis. This seasonal spatial distribution of aerosols justifies the temporal variability of the particles observed at the different sites in the Sahel. In addition, a combined analysis of AOD and Angstrom coefficient indicates the aerosol period in the Sahel in spring (March-April-May) and summer (June-July-August). However, these aerosols are strongly dominated by desert dust whose main sources are located north in the Sahara and Sahel. 展开更多
关键词 WEST-AFRICA AEROSOLS Airborne Sensors AERONET MERRA Model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部