A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insig...A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insight into physical processes in astrophysical objects,such as the formation of stars.An important factor for success in these experiments is targetry.To date,targets have mainly relied on expensive and challenging microfabrication methods.The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry.This can make targets cheaper and faster to manufacture,while maintaining robustness and reproducibility.The platform is intended for experiments on plasma flows,but it is flexible and may be adapted to the constraints of other experimental setups.Examples of targets used in experimental campaigns are shown,including a design for insertion in a high magnetic field coil.Experimental results are included,demonstrating the performance of the targets.展开更多
Laser-driven ion sources are a rapidly developing technology producing high energy,high peak current beams.Their suitability for applications,such as compact medical accelerators,motivates development of robust accele...Laser-driven ion sources are a rapidly developing technology producing high energy,high peak current beams.Their suitability for applications,such as compact medical accelerators,motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers.These applications not only require high beam energy,but also place demanding requirements on the source stability and controllability.This can be seriously affected by the laser temporal contrast,precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters.Here,we present the experimental generation of>60 MeV protons and>30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities>1021 Wcm2.Ions are accelerated by an extreme localised space charge field≥30TVm-1,over a million times higher than used in conventional accelerators.The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency,in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma.We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion.Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.展开更多
基金Additional funding was provided by the Student Grant Competition of CTU(No.SGS22/180/OHK4/3T/14)the Ministry of Education,Youth&Sports of the Czech Republic(No.LM2018114)+1 种基金the Horizon 2020 project Laserlab-Europe V(No.871124)This work was funded by the Helmholtz Association(No.VHNG-1338).
文摘A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insight into physical processes in astrophysical objects,such as the formation of stars.An important factor for success in these experiments is targetry.To date,targets have mainly relied on expensive and challenging microfabrication methods.The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry.This can make targets cheaper and faster to manufacture,while maintaining robustness and reproducibility.The platform is intended for experiments on plasma flows,but it is flexible and may be adapted to the constraints of other experimental setups.Examples of targets used in experimental campaigns are shown,including a design for insertion in a high magnetic field coil.Experimental results are included,demonstrating the performance of the targets.
基金supported by Kakenhi Grant No.16K05506,Grant No.20H00140,Grant No.21KK0049,Grant No.22H00121,JST PRESTO Grant No.JPMJPR16P9,QST President's Strategic Grant(QST) International Research Initiative(AAA98)and Creative Research(ABACS),and by Laserlab Europe V(PRISES,contract no.871124)supported by EU's Horizon 2020 research and innovation program under the Marie Sktodowska-Curie grant agreement No 894679support by JST-Mirai Program Grant Number JPMJMI17A1,Japan.N.P.D.,EJ.D.,G.S.H.,Z.N.acknowledge support from STFC grants ST/P002021/1,STN001639/1.
文摘Laser-driven ion sources are a rapidly developing technology producing high energy,high peak current beams.Their suitability for applications,such as compact medical accelerators,motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers.These applications not only require high beam energy,but also place demanding requirements on the source stability and controllability.This can be seriously affected by the laser temporal contrast,precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters.Here,we present the experimental generation of>60 MeV protons and>30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities>1021 Wcm2.Ions are accelerated by an extreme localised space charge field≥30TVm-1,over a million times higher than used in conventional accelerators.The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency,in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma.We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion.Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.