The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of...The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of n qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.展开更多
文摘The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of n qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.