Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subti...Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subtilus K-18. Maximum cellulose production performed in 250 mL erlenmeyer flask with submerged fermentation attained at 50"C, pH 5, 140 r· min-1 for 24 h. Results showed the efficient cellulose production from acid steam pretreatrnent (being autoclaved at 15 Psi for 15 rain) than acid pretreatment. The optimum condition for maximum carboxymethyl cellulas (CMCase) was 1.811 IU·mL-1·min-1 (0.8% acid cone., 10 g biomass loading, 6 h reaction time) and filter paper activity (FPase) was 2.255 IU·mL·-1·min-1 (1% acid conc., 10 g biomass loading, 8 h reaction time). Whereas, the acid steam maximum CMCase activity recorded was 2.585 IU·mL-1·min-1 (0.8% acid cone., 15 g substrate loading and 8 h reaction time) and the highest FPase activity was 2.055 IU·mL-1·min-1 (0.8% cone., 10 g biomass, 6 h reaction time then autoclaved). Results revealed that acid pretreated Eucalyptus leaves were better lignocellulosic biomass for cellulose production by submerged fermentation.展开更多
文摘Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subtilus K-18. Maximum cellulose production performed in 250 mL erlenmeyer flask with submerged fermentation attained at 50"C, pH 5, 140 r· min-1 for 24 h. Results showed the efficient cellulose production from acid steam pretreatrnent (being autoclaved at 15 Psi for 15 rain) than acid pretreatment. The optimum condition for maximum carboxymethyl cellulas (CMCase) was 1.811 IU·mL-1·min-1 (0.8% acid cone., 10 g biomass loading, 6 h reaction time) and filter paper activity (FPase) was 2.255 IU·mL·-1·min-1 (1% acid conc., 10 g biomass loading, 8 h reaction time). Whereas, the acid steam maximum CMCase activity recorded was 2.585 IU·mL-1·min-1 (0.8% acid cone., 15 g substrate loading and 8 h reaction time) and the highest FPase activity was 2.055 IU·mL-1·min-1 (0.8% cone., 10 g biomass, 6 h reaction time then autoclaved). Results revealed that acid pretreated Eucalyptus leaves were better lignocellulosic biomass for cellulose production by submerged fermentation.