期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Single Mode Periodic Wave Trains in Self-Gravitating Dusty Plasma
1
作者 francis Formusang Ngwabe françois marie moukam kakmeni 《Journal of Applied Mathematics and Physics》 2023年第11期3585-3609,共25页
In this paper, we consider the dynamics of modulated waves in an unmagnetized, non-isothermal self-gravitating dusty plasma model. The varying charge on the moving dust, as it moves in and out of regions of differing ... In this paper, we consider the dynamics of modulated waves in an unmagnetized, non-isothermal self-gravitating dusty plasma model. The varying charge on the moving dust, as it moves in and out of regions of differing electron and ion densities (due to changes in the electrostatic potential), will be out of phase with the equilibrium charge. The effect of the dust is to increase the phase velocity of the ion-acoustic (IA) waves i.e. decrease the Landau damping. In the low-amplitude limit and weak damping, we apply the reductive perturbation method on the model that resulted to the complex cubic Ginzburg-Landau (CCGL) equation. From these results, it is observed that, the plasma parameters strongly influence the properties of the solitary wave solution namely, the amplitude and the width. The effects of non-isothermal electrons, gravity, dust charge fluctuations and drifting motion on the ion-acoustic solitary waves are discussed with application in astrophysical contexts. It is also observed that the number of charges residing on the dust grains increases the modulational stability of the plane waves in the plasma, thus, enhancing the generation of modulated waves. 展开更多
关键词 Ginzburg-Landau Equation Weierstrass Function Modulated Waves Self-Gravitating Dusty Plasma
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部