The objective of our study is to evaluate the concentration of radon (<sup>86</sup>Rn) inside houses in the town of Koudougou in order to estimate its impact on the health of the population. Indeed, when u...The objective of our study is to evaluate the concentration of radon (<sup>86</sup>Rn) inside houses in the town of Koudougou in order to estimate its impact on the health of the population. Indeed, when uranium-rich minerals are found near the surface of the ground, radon concentrations can reach tens of becquerels per cubic meter in enclosed spaces. Given the nature of the geological base of Burkina Faso, this situation is quite probable and certain places that are sometimes poorly ventilated (house, school, office, etc.) can have radon levels high enough to constitute a health problem for occupants. Thus, twenty-four (24) sample houses were identified. In each house, the Corentium digital detector was between 0.8 m and 2 m for at least one week in a place where the occupants estimate that they spend more time of time and measure the concentration of radon in the long term and short term. The recorded data allowed us to determine the Absorbed Dose and the Annual Effective Dose of radon gas for each house in order to estimate the Risk of Cancer and the probable Number of Cases of Lung Cancer per million inhabitants. Thus, the results indicate that the long-term radon concentration varies between 6 Bq/m<sup>3</sup> and 285 Bq/m<sup>3</sup> respectively in houses 11 and 4 compared to 1 Bq/m<sup>3</sup> to 208 Bq/m<sup>3</sup> in the short term in the same houses. Also, in the long term, in control houses 1, 3 and 4, the radon level is above the recommended threshold interval. For the short term, these are houses 1, 3, 4 and 17 respectively with 110 Bq/m<sup>3</sup>, 142 Bq/m<sup>3</sup>, 208 Bq/m<sup>3</sup> and 105 Bq/m<sup>3</sup>. As for the long-term and short-term effective doses, only houses 1, 3, 4, 17 and 24 have values between 3 - 10 Sv/year. The estimation of the relative risk of lung cancer gives values relatively close to unity and between 1.006 and 1.142 with an average of 1.035 and that of the Number of Lung Cancer Cases per million inhabitants gives values between 8 and 166 with an average of 42. Thus, we can conclude that with the exception of houses 1, 3, 4 and 17, the radon concentrations are relatively low in the twenty-four control houses in the city of Koudougou. The lifestyle of the populations can well explain this situation when we know that people are in the habit of always leaving doors and windows open, especially when they are not sleeping. We can therefore say that the risk of population exposure to radon gas is relatively low in the town of Koudougou.展开更多
The intensive and inappropriate use of water, fertilizers and phytosanitary products is sources of water and soil pollution. It is thus necessary to improve the management of irrigation water in order to optimize its ...The intensive and inappropriate use of water, fertilizers and phytosanitary products is sources of water and soil pollution. It is thus necessary to improve the management of irrigation water in order to optimize its use and productivity, especially in regions where water resources are becoming increasingly scarce. The water flow and non-reactive solutes’ transport simulation under drip irrigation were carried out in a 3-layered soil profile distributed from top to bottom<em> i.e</em>., sandy, sandy-silty, silty-sandy-clay. The aim of this study was thus, to provide a good practice of water management associated with solutes’ application, in order to retain as much solute as possible in the root zone, which will increase the residence time of the solutes. Three treatments of water flux corresponding to 100% <em>ET</em><sub><em>c</em></sub>, 75% <em>ET</em><sub><em>c</em></sub>, 50% <em>ET</em><sub><em>c</em></sub>, combined with 100 mmol /L/ m<sup>2</sup> of NPK and 246 mmol/L/m<sup>2</sup> of urea applicable in two doses, were carried out over a period of 110 days corresponding to the duration of the cropping cycle for the intermediate variety of maize. The 100%<em> ET</em><sub><em>c</em></sub> and 75% <em>ET</em><sub><em>c</em></sub> treatments cause more loss of water and solutes, because of the sandy texture of the soil. However, a 50% <em>ET</em><sub><em>c</em></sub> water flux would reduce more water loss through drainage, and solutes’ loss due to leaching beyond the root zone, which would increase the residence time of solutes in the soil profile. Application tests of the NPK solute on different days before the 15<sup>th</sup> day after sowing were also carried out according to the technical itinerary for maize production in Burkina Faso, in order to find a favorable day for application of the solute. For the different dates of solute’s application, there was more loss of the solute as we approach the 15<sup>th</sup> day after sowing. To limit this loss and increase the residence time of the NPK solute, one could apply the solute without first supplying water, the day before and the day after the date of solute’ injection. Or, one could amend the soil with organic matter to improve its retention capacity of water, and the solutes’ residence time in the soil.展开更多
This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of def...This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV.展开更多
In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the...In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.展开更多
In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system C...In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system Cu(In,Ga)Se<sub>2</sub> solar cells. The performance of Cu(In,Ga)Se<sub>2</sub>solar cells has been modeled and numerically simulated by using the SCAPS- 1D device simulation tool. The cells with a ZnSe, Zn(O,S) and (Zn,Mg)O buffer layers were compared with the reference CdS buffer layer. The investigation of ZnSe, Zn(O, S) and (Zn,Mg)O-based cells to substitute the traditional CdS in the future shows that the ZnSe-buffer layer is a potential material to replace CdS, which revealed the best efficiency of 20.76%, the other electrical parameters are: J<sub>SC</sub> = 34.6 mA/cm<sup>2</sup>, V<sub>OC</sub> = 0.76 V and FF = 79.6%. The losses as a function of the temperature are estimated at 0.1%/K, among all kinds of buffer layers studied. We have also shown that the use of a high band-gap buffer layer is necessary to obtain a better short-circuit current density J<sub>SC</sub>. From our results, we note that the chalcogenide solar cells with Zn-based alternative buffer layer have almost the same stability thatthe traditional CdS buffer layer solar cells have.展开更多
In this paper, we have shown that Africa has an enormous wealth of renewable energy resources among the most important in the world such as the strong sunshine, Congo and Nile Rivers respectively among the most powerf...In this paper, we have shown that Africa has an enormous wealth of renewable energy resources among the most important in the world such as the strong sunshine, Congo and Nile Rivers respectively among the most powerful and the longest in the world. We have underlined the presence of important forests, rich subsoil in mineral elements, and strong winds. In addition to a rapidly growing human capital, Africa, therefore, has at its disposal all the factors enabling it to initiate sustainable and inclusive socio-economic development. We have shown that the transformation of these renewable energies is an opportunity for Africa to reach its socio-economic challenges. The development of renewable energies in Africa will be a source of many financial benefits and advantages both in terms of improving living conditions and carrying out activities. The electrical supply of rural areas of Africa represents a considerable issue, which can be a propellant factor in long-term socio-economic development if the conditions of use of clean fuel and cooking technologies, especially sanitary are taken into account. The provision of modern energy services can contribute to the creation of jobs for young people upstream. Among other things, we can note the development of local skills, the creation of income-generating activities, and the improvement of hygiene and health measures which are necessary conditions for family and social well-being. This requires a policy focused, on research in general and in particular on semiconductors that participate in the transformation of photovoltaic solar energy. We have stressed that Africa which is currently experiencing a period of economic growth and sustained transformation must be very looking at in its energy policy and give pride of place to renewable energies to initiate sustainable socio-economic development, equitable and inclusive different social strata both in rural areas and urban areas.展开更多
In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental...In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental results, the properties of the absorber layer and the CIGS/Mo interface have been explored, and the requirements for high-efficiency CIGS solar cell were proposed. Simulation results show that the band-gap, acceptor density, defect density are crucial parameters that affect the performance of the solar cell. The best conversion efficiency is obtained when the absorber band-gap is around 1.2 eV, the acceptor density at 10<sup>16</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> and the defect density less than 10<sup>14</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. In addition, CIGS/Mo interface has been investigated. It appears that a thin MoSe<sub>2</sub> layer reduces recombination at this interface. An improvement of 1.5 to 2.5 mA/cm<sup>2</sup> in the current density (<em>J<sub>sc</sub></em>) depending on the absorber thickness is obtained.展开更多
The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variatio...The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variation of doping and the defects density of shallow uniform donors and acceptors types are also presented.The analyse of the simulation results shows that recombination inside the space charge region(SCR)decrease more our CIGS solar cell model performance.We also found that the electrical parameters increase with increasing CIGS absorber doping density exception of JSC values that reach their maximum at 1016cm-3 and decrease due to recombination of charge carriers in the p-n junction particularly the recombination inside the SCR.We also stressed the fact that the effects of shallow uniforme donor density is very low on the performance of our CIGS solar cell model is important because it will allow to control the width of space charge region from shallow uniform acceptors defect density that has a strong influence on the different electrical parameters.Yet,good optimization of performance of the CIGS-based solar cell necessarily passes though a good control of the space charge region width and will constitute a boosting perspective for the preparation of our next paper.We contact that the results obtained of the numerical simulation with SCAPS-1D show a good agreement comparatively of the literature results.The simulation of our CIGS solar cell presents best performances if the values of the absorber layer thickness is in the range of 0.02 to 0.03μm,the buffer layer thickness is in the range of 0.02 to 0.06μm and the defects density of shallow uniform acceptors types is in the range of 1015 to 1017cm-3.展开更多
Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great dem...Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.展开更多
Sahelian countries are confronted with a lack of reliable data on water and climate allowing them to understand the effects of climate variability. To address this situation, with the support of Water Aid, we have col...Sahelian countries are confronted with a lack of reliable data on water and climate allowing them to understand the effects of climate variability. To address this situation, with the support of Water Aid, we have collected rainfall data and groundwater level in wells from 2012 to 2018 with help of local populations. Their contribution made it possible to cover a wider geographical area and to obtain the data necessary to analyze the climate variability on a small and large scale in the sub-basin of the Nouhao. The data collected are well correlated with those collected from the rain gauges of the national meteorological agency in the region of Fada N’Gourma. From 2012 to 2018, August appears to be the rainiest month. It recorded, alone, 1/3 of the average annual rainfall. The depletion of surface water tables is faster after the rainy season. The static level of the water table in the crystalline subsoil also depletes and replenishes at night after the peak water collection time, which is between noon and 8 p.m. These few years of measuring rainfall and groundwater fluctuations have shown that the correlation between rainfall and groundwater level is clearly established. Nevertheless this needs to be more investigated during a longer period to confirm the robustness of the method. On the other hand, the approach to securing water resources based on community monitoring of water resources gives good results in accordance with the National Meteorological Agency and the Directorate of water resources, however, caution recommends continuing measurements over a few decades to confirm its robustness for this aspect too.展开更多
Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants ...Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants of the conductor (resistance, conductance, inductance, capacitance). Their resolution makes it possible to determine the variation of the current and the voltage as a function of time at each point of the line. By adopting a general sinusoidal form, we propose a new exact solution to the telegraphers’ partial differential equations. Different simulations have been carried out considering the parameter of the 12/20 (24) kV Medium Voltage Cable NF C 33,220. The curves of the obtained solution better fit the real voltage curves observed in the electrical networks in operation.展开更多
A theoretical study of a polysilicon solar cell with a radial junction in static regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described...A theoretical study of a polysilicon solar cell with a radial junction in static regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes density and photocurrent are found. The wavelength and structural parameters (base radius, emitter thickness) influences on charge carriers density and photocurrent are shown and examined.展开更多
In this work, we present an experimental transient 3-Dimensionnal study for the minority charge carriers’ effective lifetime measurement under magnetic field in transient dynamic state. The magnitude of the magnetic ...In this work, we present an experimental transient 3-Dimensionnal study for the minority charge carriers’ effective lifetime measurement under magnetic field in transient dynamic state. The magnitude of the magnetic field B is varied from 0 mT to 0.03 mT. The method used is mainly based on the open circuit voltage decay method. The solar cell is injected by a low electrical excitation which protects against capacitance effects. Our approach is based on the open circuit voltage decay response analysis. From an experimental set-up, we get the transient voltage data on a digital scope. The data are used for plotting transient voltage decay curves. The curves obtained and analyzed are fitted in their linear zone. This zone presents an ideal decay which permits to get good values of lifetime. The slope of the linear decay is inversely proportional to effective lifetime. The results of fitting permit determinate the effective charge carriers’ lifetime directly. The results obtained are then presented and analyzed. The observations indicate that the charge carriers effective lifetime decrease when the magnetic field increases.展开更多
The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis u...The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis using SCAPS-1D software was used to explore the Zn(Mg,O) layer as an alternative to the toxic CdS layer. The effect of several properties such as thickness, doping, Mg concentration of the Zn(Mg,O) layer on the current-voltage parameters was explored and their optimal values were proposed. The simulation results reveal that the optimal value of the ZMO layer thickness is approximately 40 nm, the doping at 10<sup>17</sup> cm<sup>-3</sup> and an Mg composition between 0.15 and 0.2. In addition, the effect of Gallium (Ga) content in the absorber as well as the Zn(Mg,O)/CIGS interface properties on the solar cell’s performance was examined. The results show that contrary to the CdS buffer layer, the best electrical characteristics of the ZMO/CIGS heterojunction are obtained using a Ga-content equal to 0.4 and high interface defect density or unfavorable band alignment may be the causes of poor performances of Zn(Mg,O)/CIGS solar cells in the case of low and high Mg-contents.展开更多
<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span&g...<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">within the base region of p-n junction polycrystalline solar </span><span style="font-family:Verdana;">cell</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">in transient mode.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This work is an experimental transient</span><span style="font-family:Verdana;"> 3-Dimensionnal study.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The magnitude of the magnetic field B is varied from 0 mT to 0.045 mT. Indeed, the solar cell is illuminated by a stroboscopic flash with air mass 1.5</span><span style="font-family:""> </span><span style="font-family:Verdana;">and under magnetic field in transient state.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The experimental details are assumed in a figure. The procedure is outlined by the Open Circuit Voltage Decay analysis. Effective minority carrier life-time is calculated by fitting the linear zone of the transient voltage decay curve</span><span style="font-family:""> </span><span style="font-family:Verdana;">because linear decay is an ideal decay. The kaleidagraph software permits access to the slope of the curve which is inversely proportional to the</span><span style="font-family:""> </span><span style="font-family:Verdana;">lifetime. The external magnetic effects</span><span style="font-family:""> </span><span style="font-family:Verdana;">on minority carriers’ effective lifetime </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> then</span><span style="font-family:""> </span><span style="font-family:Verdana;">presented and analyzed.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The analysis show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the charge carrier</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s effective lifetime decrease with the magnetic field increase.</span>展开更多
<span style="font-family:Verdana;">A theoretical study of a polysilicon solar cell with a radial junction in </span><span style="font-family:Verdana;">static</span><span ...<span style="font-family:Verdana;">A theoretical study of a polysilicon solar cell with a radial junction in </span><span style="font-family:Verdana;">static</span><span style="font-family:Verdana;"> regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes photocurrent density and quantum efficiency are found.</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">The wavelength and structural parameters (base radius, </span><span><span style="font-family:Verdana;">base thickness </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> wavelength) influences on photocurrent density and quantum </span></span><span style="font-family:Verdana;">efficiency are carried out and examined.</span></span></span></span>展开更多
文摘The objective of our study is to evaluate the concentration of radon (<sup>86</sup>Rn) inside houses in the town of Koudougou in order to estimate its impact on the health of the population. Indeed, when uranium-rich minerals are found near the surface of the ground, radon concentrations can reach tens of becquerels per cubic meter in enclosed spaces. Given the nature of the geological base of Burkina Faso, this situation is quite probable and certain places that are sometimes poorly ventilated (house, school, office, etc.) can have radon levels high enough to constitute a health problem for occupants. Thus, twenty-four (24) sample houses were identified. In each house, the Corentium digital detector was between 0.8 m and 2 m for at least one week in a place where the occupants estimate that they spend more time of time and measure the concentration of radon in the long term and short term. The recorded data allowed us to determine the Absorbed Dose and the Annual Effective Dose of radon gas for each house in order to estimate the Risk of Cancer and the probable Number of Cases of Lung Cancer per million inhabitants. Thus, the results indicate that the long-term radon concentration varies between 6 Bq/m<sup>3</sup> and 285 Bq/m<sup>3</sup> respectively in houses 11 and 4 compared to 1 Bq/m<sup>3</sup> to 208 Bq/m<sup>3</sup> in the short term in the same houses. Also, in the long term, in control houses 1, 3 and 4, the radon level is above the recommended threshold interval. For the short term, these are houses 1, 3, 4 and 17 respectively with 110 Bq/m<sup>3</sup>, 142 Bq/m<sup>3</sup>, 208 Bq/m<sup>3</sup> and 105 Bq/m<sup>3</sup>. As for the long-term and short-term effective doses, only houses 1, 3, 4, 17 and 24 have values between 3 - 10 Sv/year. The estimation of the relative risk of lung cancer gives values relatively close to unity and between 1.006 and 1.142 with an average of 1.035 and that of the Number of Lung Cancer Cases per million inhabitants gives values between 8 and 166 with an average of 42. Thus, we can conclude that with the exception of houses 1, 3, 4 and 17, the radon concentrations are relatively low in the twenty-four control houses in the city of Koudougou. The lifestyle of the populations can well explain this situation when we know that people are in the habit of always leaving doors and windows open, especially when they are not sleeping. We can therefore say that the risk of population exposure to radon gas is relatively low in the town of Koudougou.
文摘The intensive and inappropriate use of water, fertilizers and phytosanitary products is sources of water and soil pollution. It is thus necessary to improve the management of irrigation water in order to optimize its use and productivity, especially in regions where water resources are becoming increasingly scarce. The water flow and non-reactive solutes’ transport simulation under drip irrigation were carried out in a 3-layered soil profile distributed from top to bottom<em> i.e</em>., sandy, sandy-silty, silty-sandy-clay. The aim of this study was thus, to provide a good practice of water management associated with solutes’ application, in order to retain as much solute as possible in the root zone, which will increase the residence time of the solutes. Three treatments of water flux corresponding to 100% <em>ET</em><sub><em>c</em></sub>, 75% <em>ET</em><sub><em>c</em></sub>, 50% <em>ET</em><sub><em>c</em></sub>, combined with 100 mmol /L/ m<sup>2</sup> of NPK and 246 mmol/L/m<sup>2</sup> of urea applicable in two doses, were carried out over a period of 110 days corresponding to the duration of the cropping cycle for the intermediate variety of maize. The 100%<em> ET</em><sub><em>c</em></sub> and 75% <em>ET</em><sub><em>c</em></sub> treatments cause more loss of water and solutes, because of the sandy texture of the soil. However, a 50% <em>ET</em><sub><em>c</em></sub> water flux would reduce more water loss through drainage, and solutes’ loss due to leaching beyond the root zone, which would increase the residence time of solutes in the soil profile. Application tests of the NPK solute on different days before the 15<sup>th</sup> day after sowing were also carried out according to the technical itinerary for maize production in Burkina Faso, in order to find a favorable day for application of the solute. For the different dates of solute’s application, there was more loss of the solute as we approach the 15<sup>th</sup> day after sowing. To limit this loss and increase the residence time of the NPK solute, one could apply the solute without first supplying water, the day before and the day after the date of solute’ injection. Or, one could amend the soil with organic matter to improve its retention capacity of water, and the solutes’ residence time in the soil.
文摘This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV.
文摘In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.
文摘In this study, the authors investigated the performance of different buffer layers through the electrical parameters such as J<sub>sc</sub>, V<sub>oc</sub>, QE and η of the quaternary system Cu(In,Ga)Se<sub>2</sub> solar cells. The performance of Cu(In,Ga)Se<sub>2</sub>solar cells has been modeled and numerically simulated by using the SCAPS- 1D device simulation tool. The cells with a ZnSe, Zn(O,S) and (Zn,Mg)O buffer layers were compared with the reference CdS buffer layer. The investigation of ZnSe, Zn(O, S) and (Zn,Mg)O-based cells to substitute the traditional CdS in the future shows that the ZnSe-buffer layer is a potential material to replace CdS, which revealed the best efficiency of 20.76%, the other electrical parameters are: J<sub>SC</sub> = 34.6 mA/cm<sup>2</sup>, V<sub>OC</sub> = 0.76 V and FF = 79.6%. The losses as a function of the temperature are estimated at 0.1%/K, among all kinds of buffer layers studied. We have also shown that the use of a high band-gap buffer layer is necessary to obtain a better short-circuit current density J<sub>SC</sub>. From our results, we note that the chalcogenide solar cells with Zn-based alternative buffer layer have almost the same stability thatthe traditional CdS buffer layer solar cells have.
文摘In this paper, we have shown that Africa has an enormous wealth of renewable energy resources among the most important in the world such as the strong sunshine, Congo and Nile Rivers respectively among the most powerful and the longest in the world. We have underlined the presence of important forests, rich subsoil in mineral elements, and strong winds. In addition to a rapidly growing human capital, Africa, therefore, has at its disposal all the factors enabling it to initiate sustainable and inclusive socio-economic development. We have shown that the transformation of these renewable energies is an opportunity for Africa to reach its socio-economic challenges. The development of renewable energies in Africa will be a source of many financial benefits and advantages both in terms of improving living conditions and carrying out activities. The electrical supply of rural areas of Africa represents a considerable issue, which can be a propellant factor in long-term socio-economic development if the conditions of use of clean fuel and cooking technologies, especially sanitary are taken into account. The provision of modern energy services can contribute to the creation of jobs for young people upstream. Among other things, we can note the development of local skills, the creation of income-generating activities, and the improvement of hygiene and health measures which are necessary conditions for family and social well-being. This requires a policy focused, on research in general and in particular on semiconductors that participate in the transformation of photovoltaic solar energy. We have stressed that Africa which is currently experiencing a period of economic growth and sustained transformation must be very looking at in its energy policy and give pride of place to renewable energies to initiate sustainable socio-economic development, equitable and inclusive different social strata both in rural areas and urban areas.
文摘In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental results, the properties of the absorber layer and the CIGS/Mo interface have been explored, and the requirements for high-efficiency CIGS solar cell were proposed. Simulation results show that the band-gap, acceptor density, defect density are crucial parameters that affect the performance of the solar cell. The best conversion efficiency is obtained when the absorber band-gap is around 1.2 eV, the acceptor density at 10<sup>16</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> and the defect density less than 10<sup>14</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. In addition, CIGS/Mo interface has been investigated. It appears that a thin MoSe<sub>2</sub> layer reduces recombination at this interface. An improvement of 1.5 to 2.5 mA/cm<sup>2</sup> in the current density (<em>J<sub>sc</sub></em>) depending on the absorber thickness is obtained.
文摘The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variation of doping and the defects density of shallow uniform donors and acceptors types are also presented.The analyse of the simulation results shows that recombination inside the space charge region(SCR)decrease more our CIGS solar cell model performance.We also found that the electrical parameters increase with increasing CIGS absorber doping density exception of JSC values that reach their maximum at 1016cm-3 and decrease due to recombination of charge carriers in the p-n junction particularly the recombination inside the SCR.We also stressed the fact that the effects of shallow uniforme donor density is very low on the performance of our CIGS solar cell model is important because it will allow to control the width of space charge region from shallow uniform acceptors defect density that has a strong influence on the different electrical parameters.Yet,good optimization of performance of the CIGS-based solar cell necessarily passes though a good control of the space charge region width and will constitute a boosting perspective for the preparation of our next paper.We contact that the results obtained of the numerical simulation with SCAPS-1D show a good agreement comparatively of the literature results.The simulation of our CIGS solar cell presents best performances if the values of the absorber layer thickness is in the range of 0.02 to 0.03μm,the buffer layer thickness is in the range of 0.02 to 0.06μm and the defects density of shallow uniform acceptors types is in the range of 1015 to 1017cm-3.
文摘Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.
文摘Sahelian countries are confronted with a lack of reliable data on water and climate allowing them to understand the effects of climate variability. To address this situation, with the support of Water Aid, we have collected rainfall data and groundwater level in wells from 2012 to 2018 with help of local populations. Their contribution made it possible to cover a wider geographical area and to obtain the data necessary to analyze the climate variability on a small and large scale in the sub-basin of the Nouhao. The data collected are well correlated with those collected from the rain gauges of the national meteorological agency in the region of Fada N’Gourma. From 2012 to 2018, August appears to be the rainiest month. It recorded, alone, 1/3 of the average annual rainfall. The depletion of surface water tables is faster after the rainy season. The static level of the water table in the crystalline subsoil also depletes and replenishes at night after the peak water collection time, which is between noon and 8 p.m. These few years of measuring rainfall and groundwater fluctuations have shown that the correlation between rainfall and groundwater level is clearly established. Nevertheless this needs to be more investigated during a longer period to confirm the robustness of the method. On the other hand, the approach to securing water resources based on community monitoring of water resources gives good results in accordance with the National Meteorological Agency and the Directorate of water resources, however, caution recommends continuing measurements over a few decades to confirm its robustness for this aspect too.
文摘Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants of the conductor (resistance, conductance, inductance, capacitance). Their resolution makes it possible to determine the variation of the current and the voltage as a function of time at each point of the line. By adopting a general sinusoidal form, we propose a new exact solution to the telegraphers’ partial differential equations. Different simulations have been carried out considering the parameter of the 12/20 (24) kV Medium Voltage Cable NF C 33,220. The curves of the obtained solution better fit the real voltage curves observed in the electrical networks in operation.
文摘A theoretical study of a polysilicon solar cell with a radial junction in static regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes density and photocurrent are found. The wavelength and structural parameters (base radius, emitter thickness) influences on charge carriers density and photocurrent are shown and examined.
文摘In this work, we present an experimental transient 3-Dimensionnal study for the minority charge carriers’ effective lifetime measurement under magnetic field in transient dynamic state. The magnitude of the magnetic field B is varied from 0 mT to 0.03 mT. The method used is mainly based on the open circuit voltage decay method. The solar cell is injected by a low electrical excitation which protects against capacitance effects. Our approach is based on the open circuit voltage decay response analysis. From an experimental set-up, we get the transient voltage data on a digital scope. The data are used for plotting transient voltage decay curves. The curves obtained and analyzed are fitted in their linear zone. This zone presents an ideal decay which permits to get good values of lifetime. The slope of the linear decay is inversely proportional to effective lifetime. The results of fitting permit determinate the effective charge carriers’ lifetime directly. The results obtained are then presented and analyzed. The observations indicate that the charge carriers effective lifetime decrease when the magnetic field increases.
文摘The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis using SCAPS-1D software was used to explore the Zn(Mg,O) layer as an alternative to the toxic CdS layer. The effect of several properties such as thickness, doping, Mg concentration of the Zn(Mg,O) layer on the current-voltage parameters was explored and their optimal values were proposed. The simulation results reveal that the optimal value of the ZMO layer thickness is approximately 40 nm, the doping at 10<sup>17</sup> cm<sup>-3</sup> and an Mg composition between 0.15 and 0.2. In addition, the effect of Gallium (Ga) content in the absorber as well as the Zn(Mg,O)/CIGS interface properties on the solar cell’s performance was examined. The results show that contrary to the CdS buffer layer, the best electrical characteristics of the ZMO/CIGS heterojunction are obtained using a Ga-content equal to 0.4 and high interface defect density or unfavorable band alignment may be the causes of poor performances of Zn(Mg,O)/CIGS solar cells in the case of low and high Mg-contents.
文摘<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">within the base region of p-n junction polycrystalline solar </span><span style="font-family:Verdana;">cell</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">in transient mode.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This work is an experimental transient</span><span style="font-family:Verdana;"> 3-Dimensionnal study.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The magnitude of the magnetic field B is varied from 0 mT to 0.045 mT. Indeed, the solar cell is illuminated by a stroboscopic flash with air mass 1.5</span><span style="font-family:""> </span><span style="font-family:Verdana;">and under magnetic field in transient state.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The experimental details are assumed in a figure. The procedure is outlined by the Open Circuit Voltage Decay analysis. Effective minority carrier life-time is calculated by fitting the linear zone of the transient voltage decay curve</span><span style="font-family:""> </span><span style="font-family:Verdana;">because linear decay is an ideal decay. The kaleidagraph software permits access to the slope of the curve which is inversely proportional to the</span><span style="font-family:""> </span><span style="font-family:Verdana;">lifetime. The external magnetic effects</span><span style="font-family:""> </span><span style="font-family:Verdana;">on minority carriers’ effective lifetime </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> then</span><span style="font-family:""> </span><span style="font-family:Verdana;">presented and analyzed.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The analysis show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the charge carrier</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s effective lifetime decrease with the magnetic field increase.</span>
文摘<span style="font-family:Verdana;">A theoretical study of a polysilicon solar cell with a radial junction in </span><span style="font-family:Verdana;">static</span><span style="font-family:Verdana;"> regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes photocurrent density and quantum efficiency are found.</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">The wavelength and structural parameters (base radius, </span><span><span style="font-family:Verdana;">base thickness </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> wavelength) influences on photocurrent density and quantum </span></span><span style="font-family:Verdana;">efficiency are carried out and examined.</span></span></span></span>