This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendo...This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snap- through and the single joint hyperflexion, which are the two breakdowns most frequently observed during experi- mentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.展开更多
文摘This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snap- through and the single joint hyperflexion, which are the two breakdowns most frequently observed during experi- mentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.