After natural or artificial insemination, the spermatozoon starts a journey from the site of deposition to the place of fertilization. However, only a small subset of the spermatozoa deposited achieves their goal: to...After natural or artificial insemination, the spermatozoon starts a journey from the site of deposition to the place of fertilization. However, only a small subset of the spermatozoa deposited achieves their goal: to reach and fertilize the egg. Factors involved in controlling sperm transport and fertilization include the female reproductive tract environment, cell-cell interactions, gene expression, and phenotypic sperm traits. Some of the significant determinants of fertilization are known (i.e., motility or DNA status), but many sperm traits are still indecipherable. One example is the influence of sperm dimensions and shape upon transport within the female genital tract towards the oocyte. Biophysical associations between sperm size and motility may influence the progression of spermatozoa through the female reproductive tract, but uncertainties remain concerning how sperm morphology influences the fertilization process, and whether only the sperm dimensions per se are involved. Moreover, such explanations do not allow the possibility that the female tract is capable of distinguishing fertile spermatozoa on the basis of their morphology, as seems to be the case with biochemical, molecular, and genetic properties. This review focuses on the influence of sperm size and shape in evolution and their putative role in sperm transport and selection within the uterus and the ability to fertilize the oocyte.展开更多
The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatoz...The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatozoa previously selected by density gradient in OEC and determinate some sperm characteristics that could explain the results obtained. In this study, we assessed in vitro fertilization (IVF), tyrosine phosphorylation, phosphatidylserine translocation, nuclear DNA fragmentation, and chromatin decondensation. Three experimental sperm groups, previously selected by Percoll gradient, were established according to the origin of the sperm used for IVF: (i) W30 group: spermatozoa were incubated with oocytes in the absence of OEC; (ii) NB group: after sperm incubation in OEC, the unbound spermatozoa were incubated with oocytes, in the absence of OEC; and (iii) B group: after sperm incubation with OEC, the bound spermatozoa were incubated with oocytes in the OEC plates. The results showed that sperm from the NB group led to a lower IVF yield, accompanied by low penetration rates (NB: 19.6%, B: 94.9%, and W30: 62.9%; P 〈 0.001) and problems of nuclear decondensation. Moreover, higher levels of tyrosine phosphorylation were observed in the NB group compared with the W30 and B groups (NB: 58.7%, B: 2.5%, and W30: 4.5%; P 〈 0.01). A similar trend was observed in phosphatidylserine translocation (NB: 93.7%, B. 5.7%, and W30: 44.2%; P 〈 0.01). These results demonstrate that the OEC exerts a rigorous degree of sperm selection, even within an already highly selected population of spermatozoa, and can capture the best functional spermatozoa for fertilization.展开更多
文摘After natural or artificial insemination, the spermatozoon starts a journey from the site of deposition to the place of fertilization. However, only a small subset of the spermatozoa deposited achieves their goal: to reach and fertilize the egg. Factors involved in controlling sperm transport and fertilization include the female reproductive tract environment, cell-cell interactions, gene expression, and phenotypic sperm traits. Some of the significant determinants of fertilization are known (i.e., motility or DNA status), but many sperm traits are still indecipherable. One example is the influence of sperm dimensions and shape upon transport within the female genital tract towards the oocyte. Biophysical associations between sperm size and motility may influence the progression of spermatozoa through the female reproductive tract, but uncertainties remain concerning how sperm morphology influences the fertilization process, and whether only the sperm dimensions per se are involved. Moreover, such explanations do not allow the possibility that the female tract is capable of distinguishing fertile spermatozoa on the basis of their morphology, as seems to be the case with biochemical, molecular, and genetic properties. This review focuses on the influence of sperm size and shape in evolution and their putative role in sperm transport and selection within the uterus and the ability to fertilize the oocyte.
文摘The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatozoa previously selected by density gradient in OEC and determinate some sperm characteristics that could explain the results obtained. In this study, we assessed in vitro fertilization (IVF), tyrosine phosphorylation, phosphatidylserine translocation, nuclear DNA fragmentation, and chromatin decondensation. Three experimental sperm groups, previously selected by Percoll gradient, were established according to the origin of the sperm used for IVF: (i) W30 group: spermatozoa were incubated with oocytes in the absence of OEC; (ii) NB group: after sperm incubation in OEC, the unbound spermatozoa were incubated with oocytes, in the absence of OEC; and (iii) B group: after sperm incubation with OEC, the bound spermatozoa were incubated with oocytes in the OEC plates. The results showed that sperm from the NB group led to a lower IVF yield, accompanied by low penetration rates (NB: 19.6%, B: 94.9%, and W30: 62.9%; P 〈 0.001) and problems of nuclear decondensation. Moreover, higher levels of tyrosine phosphorylation were observed in the NB group compared with the W30 and B groups (NB: 58.7%, B: 2.5%, and W30: 4.5%; P 〈 0.01). A similar trend was observed in phosphatidylserine translocation (NB: 93.7%, B. 5.7%, and W30: 44.2%; P 〈 0.01). These results demonstrate that the OEC exerts a rigorous degree of sperm selection, even within an already highly selected population of spermatozoa, and can capture the best functional spermatozoa for fertilization.