期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interpolation of Vector Measures
1
作者 Ricardo del CAMPO Antonio FERNANDEZ +2 位作者 Fernando MAYORAL francisco naranjo Enrique A. SANCHEZ-PEREZ 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第1期119-134,共16页
Let (Ω, ∑) be a measurable space and mo : E→ Xo and m1 : E → X1 be positive vector measures with values in the Banach KSthe function spaces Xo and X1. If 0 〈 a 〈 1, we define a X01-ax1a new vector measure [... Let (Ω, ∑) be a measurable space and mo : E→ Xo and m1 : E → X1 be positive vector measures with values in the Banach KSthe function spaces Xo and X1. If 0 〈 a 〈 1, we define a X01-ax1a new vector measure [m0, m]a with values in the Calderdn lattice interpolation space and we analyze the space of integrable functions with respect to measure [m0, m1]a in order to prove suitable extensions of the classical Stein Weiss formulas that hold for the complex interpolation of LP-spaces. Since each p-convex order continuous Kothe function space with weak order unit can be represented as a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to obtain representations of the corresponding complex interpolation spaces. As applications, we provide a Riesz-Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula for representing the interpolation of the injective tensor product of such spaces. 展开更多
关键词 INTERPOLATION Banach function space vector measure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部