期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Landesman–Lazer Type Conditions and Multiplicity Results for Nonlinear Elliptic Problems with Neumann Boundary Values
1
作者 Edcarlos Domingos DA SILVA francisco odair de paiva 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第2期229-250,共22页
We establish the existence and multiplicity of solutions for Steklov problems under non- resonance or resonance conditions using variational methods. In our main theorems, we consider a weighted eigenvalue problem of ... We establish the existence and multiplicity of solutions for Steklov problems under non- resonance or resonance conditions using variational methods. In our main theorems, we consider a weighted eigenvalue problem of Steklov type. 展开更多
关键词 Neumann-Steklov eigenvalue problems RESONANCE Landesman-Lazer conditions
原文传递
Existence and Multiplicity Results for a Class of Nonlinear Schrödinger Equations with Magnetic Potential Involving Sign-Changing Nonlinearity
2
作者 francisco odair de paiva Sandra Machado de Souza Lima Olimpio Hiroshi Miyagaki 《Analysis in Theory and Applications》 CSCD 2022年第2期148-177,共30页
In this work we consider the following class of elliptic problems{−Δ_(A)u+u=a(x)|u|^(q−2)u+b(x)|u|^(p−2)u in R^(N),u∈H_(A)^(1)(R^(N)),(P)with 2<q<p<2^(∗)=2N/N−2,a(x)and b(x)are functions that can change sig... In this work we consider the following class of elliptic problems{−Δ_(A)u+u=a(x)|u|^(q−2)u+b(x)|u|^(p−2)u in R^(N),u∈H_(A)^(1)(R^(N)),(P)with 2<q<p<2^(∗)=2N/N−2,a(x)and b(x)are functions that can change sign and satisfy some additional conditions;u∈H_(A)^(1)(R^(N))and A:R^(N)→R^(N) is a magnetic potential.Also using the Nehari method in combination with other complementary arguments,we discuss the existence of infinitely many solutions to the problem in question,varying the assumptions about the weight functions. 展开更多
关键词 Magnetic potential sign-changing weight functions Nehari manifold Fibering map
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部