期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A Review of Thermo- and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 2: Ice Crystal and Snow Scavenging
1
作者 Gianni Santachiara franco prodi +1 位作者 franco Belosi Alessia Nicosia 《Atmospheric and Climate Sciences》 2023年第4期466-477,共12页
The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which ... The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature. 展开更多
关键词 Ice Crystals Snow Crystals Ice Nucleating Particles Aerosol Scavenging Phoretic Forces
下载PDF
A Review of Termo- and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 1: Drop Scavenging 被引量:3
2
作者 Gianni Santachiara franco prodi franco Belosi 《Atmospheric and Climate Sciences》 2012年第2期148-158,共11页
The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoreti... The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoretical analyses agree that Brownian diffusion appears to dominate drop scavenging of aerosol with radius less than 0.1 μm, and inertial impaction dominates scavenging of aerosol with radius higher than 1 μm. Thus, there is a minimum collection efficiency for particles in the approximate range 0.1 μm - 1 μm, where phoretic forces are felt. Generally speaking, published papers report not uniform evaluations of the contribution of thermo- and diffusiophoretic forces. This disagreement is partially due to the different laboratory and field conditions, and different theoretical approaches. 展开更多
关键词 THERMOPHORESIS DIFFUSIOPHORESIS IMPACTION
下载PDF
Performance Evaluation of Four Commercial Optical Particle Counters 被引量:1
3
作者 franco Belosi Gianni Santachiara franco prodi 《Atmospheric and Climate Sciences》 2013年第1期41-46,共6页
The performances of four optical particles counters, Aerosol Spectrometer (Grimm 1.108), Enviro Check (Grimm 1.107), DustMonit and ParticleScan, were evaluated in laboratory tests employing monodisperse aerosol partic... The performances of four optical particles counters, Aerosol Spectrometer (Grimm 1.108), Enviro Check (Grimm 1.107), DustMonit and ParticleScan, were evaluated in laboratory tests employing monodisperse aerosol particles. The study focused on how commercial instruments perform during routine measurements respect to OPC scientific understanding, because it is important for users of such instruments to be aware of their limitations. Measurements were performed using aerosol generated by a Monodisperse Aerosol Generator (MAGE), which produced carnauba wax particles of diameter (1.00 ± 0.08) μm and (1.40 ± 0.15) μm, and monodisperse Polystyrene Latex (PSL) aerosol with nominal diameter of 1.0mm. The results show comparable total particle number concentrations for all the counters, when the count of the first size channel (0.3 - 0.4 μm) for the 1.108 Grimm counter was left out. In the said channel the Grimm counter 1.108 always showed much higher particle counts than those inferred from the tested aerosols. The overcount was proved by the fact that the aerosol sampled in each test on a Nuclepore filter showed no particles in the 0.3 - 0.4 μm range when examined under Scanning Electronic Microscope (SEM). The presence of an artefact produced by the counter was assumed as a likely explanation. For all the counters, the Count Median Diameters (CMDs) of aerosol size distributions, were far below the expected value for the aerosol used. The nearest CMD values to the expected ones were shown by the Grimm 1.107 counter. 展开更多
关键词 Optical PARTICLE COUNTER Air quality AEROSOL SIZE Distribution
下载PDF
Discrepancy between Ice Particles and Ice Nuclei in Mixed Clouds: Critical Aspects
4
作者 Gianni Santachiara franco prodi +1 位作者 Alessia Nicosia franco Belosi 《Atmospheric and Climate Sciences》 2017年第3期287-297,共11页
Measurements of ice crystal concentrations in mixed clouds tend to exceed ice nucleus concentrations measured in nearby clear air. This discrepancy is a source of uncertainty in climate change projections as the radia... Measurements of ice crystal concentrations in mixed clouds tend to exceed ice nucleus concentrations measured in nearby clear air. This discrepancy is a source of uncertainty in climate change projections as the radiative properties of mixed phase clouds are largely determined by their liquid and ice water content. The ice enhancement process can sometimes depend on secondary ice production, which can occur through ice crystal fracture during sublimation, cloud drop shattering during freezing or following collision with ice particles. However, the discrepancy is observed even in mixed clouds where only primary ice nucleation processes occur. Several hypotheses have been suggested for the observed discrepancies. One factor could be the existence in clouds of pockets of high vapor supersaturation formed by droplet freezing or removal of small droplets by collision with larger droplets, associated with the fact that ice crystal concentration increases with water supersaturation. However, ice crystal concentrations are usually measured at near water saturation. Additional factors could be drop freezing during evaporation and activation of droplet evaporation residues. Here we suggest that a major factor could be underestimation of the contact freezing mode as it is not measured in experimental campaigns and seldom considered in nucleation models. Laboratory experiments give only incomplete answers to the important questions concerning the contact freezing mode, e.g. what fraction of the aerosol particles that come into contact with the droplet surface results in a freezing event and what is the influence of particle type and size, air temperature and relative humidity. As supercooled droplets grow or evaporate in mixed clouds, phoretic forces should play an important role in the collision efficiency between aerosol and droplets, and consequently in contact freezing. A further question is the possibility that aerosol, usually not active in deposition or condensation/immersion freezing, can trigger ice nucleation by colliding with supercooled droplets. 展开更多
关键词 ICE Crystal ICE Nuclei Particles ICE NUCLEATION Process THERMOPHORESIS DIFFUSIOPHORESIS
下载PDF
Further Laboratory Experiments on Aerosol Scavenging in Mixed Clouds to Assess the Role of Phoretic Forces and Particle Solubility
5
作者 franco prodi Gianluca Amirante +2 位作者 Francesco Di Natale Gianni Santachiara franco Belosi 《Atmospheric and Climate Sciences》 2018年第2期235-247,共13页
Scavenging experiments have been performed in a cloud chamber inside a cold room with different aerosol particles: Paraffin particles, NaCl particles, Magnesium oxide particles, Carbon particles, Sahara dust particles... Scavenging experiments have been performed in a cloud chamber inside a cold room with different aerosol particles: Paraffin particles, NaCl particles, Magnesium oxide particles, Carbon particles, Sahara dust particles. Essentially the experimental tests were carried on following the sequence of operations: the generation of the aerosol particles, their injection in the lower part of the cloud chamber, injection of water droplets in the whole chamber volume, nucleation of ice crystals, collection of ice crystals and their examination as for resulting scavenging efficiency. Evidence is given of the peculiar behaviour of soluble particles, individual and eventually inside mixed particles, leading to very much important scavenging efficiency, probably to be ascribed to aerodynamic capture. The evident peculiar behaviour of deliquescent particles can be oriented towards applications to an efficient abatement of specific effluents, on one side, and to weather modification experiments, both rain enhancement and hail prevention experiments. 展开更多
关键词 AEROSOL SCAVENGING Phoretic FORCES MIXED CLOUDS
下载PDF
Eyjafjallajökull Volcanic Eruption: Ice Nuclei and Particle Characterization
6
作者 franco Belosi Gianni Santachiara franco prodi 《Atmospheric and Climate Sciences》 2011年第2期48-54,共7页
The Eyjafjallaj?kull 2010 eruption was an extraordinary event in that it led to widespread and unprecedented disruption to air travel over Europe – a region generally considered to be free from the hazards associated... The Eyjafjallaj?kull 2010 eruption was an extraordinary event in that it led to widespread and unprecedented disruption to air travel over Europe – a region generally considered to be free from the hazards associated with volcanic eruptions, excluding the extreme south influenced by Mt. Etna. In situ measurements were performed at the research centre of the National Research Council (CNR) area of Bologna (44?31′ N;11?20′ E), an urban background site, in order to contribute to knowledge concerning the impact of the volcanic emission.Aerosol size distributions measured with a Differential Mobility Particle Sizer (DMPS) and an Optical Particle Counter (OPC) show an increase in concentration of the accumulation and coarse fraction during the transit of the ash cloud, with respect to the subsequent period of the event, while particles smaller than 0.3 μm seem not to be affected by volcanic ash. Ice nuclei measured in the sampled air during and after the ash cloud transit, show an higher concentration during the ash cloud transit, with a ratio of about 1:110 with respect to the aerosol number concentration measured with the OPC.The elemental composition of aerosol particles, performed with SEM-EDX, gives about 30% of the inorganic coarse particles (geometric diameter larger than 1 μm) of volcanic origin on the 20 April. Si and Al concentrations result prevalently much higher than Ca and Fe ones. A large number of particles contained sulphur, indicating secondary processes of sulphate/sulphuric acid formation due to sulphur dioxide oxidation during transport in the volcanic plume. 展开更多
关键词 ICE NUCLEI NUCLEATION SUPERSATURATION VOLCANIC ASH
下载PDF
Surface Snow, Firn and Ice Core Composition in Polar Areas in Relation to Atmospheric Aerosol and Gas Concentrations: Critical Aspects
7
作者 Gianni Santachiara franco Belosi +1 位作者 Alessia Nicosia franco prodi 《Atmospheric and Climate Sciences》 2016年第1期89-102,共14页
The paper addresses some of the problems surrounding the relation between ice core chemical signals and atmospheric chemical composition in polar areas. The topic is important as the reconstruction of past climate and... The paper addresses some of the problems surrounding the relation between ice core chemical signals and atmospheric chemical composition in polar areas. The topic is important as the reconstruction of past climate and past atmospheric chemical composition is based on the assumption that chemical concentrations in the air, snow, firn and ice core are correlated. Ice core interpretation of aerosol is more straightforward than that of reactive gases. The transfer functions of gaseous species strongly interacting with ice are complex and additional field and laboratory experiments are required. Ice core chemical signals depend on the chemical composition of precipitations, which are related to the physics of precipitation formation, the chemical composition of the atmosphere, and post-depositional processes. Published papers reporting data on the chemical composition of snow seldom consider the fact that crystal formation and growth in cloud (rimed or unrimed) or near the ground (clear-sky precipitations), hoar-frost formation and surface riming determine different chemical concentrations, even assuming constant background concentration in the atmosphere. This paper discusses the physical and chemical processes affecting the formation of precipitations in polar areas, and the process of scavenging gases from non-growing and growing crystals. Attention is mainly focused on the processes involving nitrate anion in snow, hoar frost and firn. Knowledge of the chemical relationship between surface snow and atmospheric chemical concentration could be enhanced by considering specific events, such as snow falling from cloud, clear sky precipitation, and surface hoar or riming surface, with simultaneous air sampling. In conclusion, field and laboratory experiments are still required to study the scavenging processes during crystal formation. 展开更多
关键词 Homogeneous Nucleation Heterogeneous Nucleation Transfer Function SCAVENGING RIMING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部