Developments in neurophysiology focusing on foveal vision have characterized more and more precisely the spatiotemporal processing that is well adapted to the regularization of the visual information within the retina...Developments in neurophysiology focusing on foveal vision have characterized more and more precisely the spatiotemporal processing that is well adapted to the regularization of the visual information within the retina. The works described in this article focus on a simplified architectural model based on features and mechanisms of adaptation in the retina. Similarly to the biological retina, which transforms luminance information into a series of encoded representations of image characteristics transmitted to the brain, our structural model allows us to reveal more information in the scene. Our modeling of the different functional pathways permits the mapping of important complementary information types at abstract levels of image analysis, and thereby allows a better exploitation of visual clues. Our model is based on a distributed cellular automata network and simulates the retinal processing of stimuli that are stationary or in motion. Thanks to its capacity for dynamic adaptation, our model can adapt itself to different scenes (e.g., bright and dim, stationary and moving, etc.) and can parallelize those processing steps that can be supported by parallel calculators.展开更多
文摘Developments in neurophysiology focusing on foveal vision have characterized more and more precisely the spatiotemporal processing that is well adapted to the regularization of the visual information within the retina. The works described in this article focus on a simplified architectural model based on features and mechanisms of adaptation in the retina. Similarly to the biological retina, which transforms luminance information into a series of encoded representations of image characteristics transmitted to the brain, our structural model allows us to reveal more information in the scene. Our modeling of the different functional pathways permits the mapping of important complementary information types at abstract levels of image analysis, and thereby allows a better exploitation of visual clues. Our model is based on a distributed cellular automata network and simulates the retinal processing of stimuli that are stationary or in motion. Thanks to its capacity for dynamic adaptation, our model can adapt itself to different scenes (e.g., bright and dim, stationary and moving, etc.) and can parallelize those processing steps that can be supported by parallel calculators.