Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family cal...Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like ad- hesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuro- muscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin Slnrxl were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.展开更多
文摘Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like ad- hesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuro- muscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin Slnrxl were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.