In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be...In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.展开更多
基金partially supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Marine Science Research and Development program(Award No.MSRDPP28)the Ministry of Education,Singapore under Tier 2 program(Award No.MOE2018-T2-1-163)。
文摘In this work,the thermodynamic,mechanical properties and electronic behaviors of D022-TiAl3 doped with W and 15 groupⅣM(M=C,Ge,Pb,Si and Sn)dopants are investigated by DFT methods.We established that ductility can be improved using multi-doping approach and revealed the mechanisms behind such brittle-to-ductile transition.In addition,it is found that there is linearity between changes in Young’s modulus and tensile/compre s sive strain ratio.An alternate insight into brittle-to-ductile transition during ductile mode cutting of brittle materials is proposed.