In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix–Raviart element and extended Crouzeix–Raviart element, of the Stokes eigenvalue pro...In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix–Raviart element and extended Crouzeix–Raviart element, of the Stokes eigenvalue problem. With the technique of Helmholtz decomposition, we first give out a posteriori error estimator and prove it as the global upper bound and local lower bound of the approximation error. Then, by deleting a jump term in the indicator, another simpler but equivalent indicator is obtained. Some numerical experiments are provided to verify our analysis.展开更多
基金Supported by National Science Foundation of China(NSFC 91330202,11001259,11371026,11201501,11031006,11071265,2011CB309703,2010DFR00700)the National Center for Mathematics and Interdisciplinary Science,CAS+1 种基金the President Foundation of AMSS-CASthe Program for Innovation Research in Central University of Finance and Economics
文摘In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix–Raviart element and extended Crouzeix–Raviart element, of the Stokes eigenvalue problem. With the technique of Helmholtz decomposition, we first give out a posteriori error estimator and prove it as the global upper bound and local lower bound of the approximation error. Then, by deleting a jump term in the indicator, another simpler but equivalent indicator is obtained. Some numerical experiments are provided to verify our analysis.