期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:1
1
作者 fu-bin chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 Monitoring change in horizontal stress Multi-wave reflection coefficients Nonlinear elasticity theory Time-lapse seismic data
下载PDF
Rock physics and seismic reflectivity parameterization and amplitude variation with offsets inversion in terms of total organic carbon indicator
2
作者 Song-He Yu Zhao-Yun Zong +2 位作者 Xing-Yao Yin Kun Lang fu-bin chen 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2092-2112,共21页
Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only deter... Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area. 展开更多
关键词 TOC Rock physics Seismic reflectivity AVO inversion Source rocks
下载PDF
Temperature Characteristics and Error Compensation for Quartz Flexible Accelerometer 被引量:7
3
作者 Jing-Min Gao Ke-Bei Zhang +1 位作者 fu-bin chen Hong-Bo Yang 《International Journal of Automation and computing》 EI CSCD 2015年第5期540-550,共11页
Reduction of error due to the influence of temperature on the quartz flexible accelerometer without any heating device is a difficult task, and is also a tendency for research and application. In this paper, static an... Reduction of error due to the influence of temperature on the quartz flexible accelerometer without any heating device is a difficult task, and is also a tendency for research and application. In this paper, static and dynamic temperature compensation models are established in order to reduce the temperature influence on accelerometer measurement accuracy. Combined with the experiment data, the relationship between the accelerometer output accuracy, temperature and the magnitude of acceleration is analyzed. The data collected from the temperature experiment show that output value of the accelerometer varies with temperature. The method of uniaxial quadrature experiment is adopted and the accelerometer output value is gauged at temperature ranging from-20℃ to 50℃. Having used the static and the dynamic temperature compensation models, the accelerometer temperature error compensation experiment is conducted and the compensated errors by the two models are analyzed. The result shows that the compensated value meets the technical requirements. Two technical indicators, the zero bias K0 and the scaling factor K1, which are used to measure the degree of accelerometers, are both improved and their fluctuation ranges are reduced. 展开更多
关键词 ACCELERATION ERROR COMPENSATION TEMPERATURE charac
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部