Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differen...Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.展开更多
基金the National Key Basic Research Program of China (2015CB942800)the National Key Research and Development Program of China, Stem Cell and Translational Research (2016YFA0100500)the National Natural Science Foundation of China (NSFC)(3187145 31671500, 31730060, and 81371264).
文摘Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.