期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Co-adsorption behavior of aggregated asphaltenes and silica nanoparticles at oil/water interface and its effect on emulsion stability
1
作者 Guang-Yu Sun Hao Zhang +6 位作者 Dai-Wei Liu Chuan-Xian Li Fei Yang Bo Yao Ze Duan Xin-Ya Chen fu-jun sheng 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1793-1802,共10页
In petroleum industry, crude oil emulsions are commonly formed in oilfields. The asphaltenes and fine particles in crude oil may affect the stability of the emulsions by adsorbing at the water/oil interface. In this r... In petroleum industry, crude oil emulsions are commonly formed in oilfields. The asphaltenes and fine particles in crude oil may affect the stability of the emulsions by adsorbing at the water/oil interface. In this research, the effect of silica nanoparticles and asphaltenes on emulsion stability is explored first. The asphaltenes are proved to benefit emulsion stability. Unlike the asphaltenes, however, the modified silica nanoparticles may have positive or negative effect on emulsion stability, depending on the asphaltene concentration and aggregation degree in the emulsions. Further, it is confirmed by conducting interfacial experiment that the asphaltenes and particles can adsorb at the interface simultaneously and determine the properties of the interfacial layer. More in-depth experiments concerning contact angle and asphaltene adsorption amount on the particles indicate that the asphaltenes can modify the wettability of the particles. Higher concentration and lower aggregation degree of the asphaltenes can increase their adsorption amount on the surface of particles and then improve the modification effectiveness of the particles. Resultantly, the particles with good modification effectiveness can enhance the emulsion stability while the particles with poor modification effectiveness will weaken the emulsion stability. 展开更多
关键词 ASPHALTENE Silica nanoparticle Co-adsorption behavior Modification effectiveness Emulsion stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部