We propose an improved real-space parallel strategy for the density matrix renormalization group(DMRG)method,where boundaries of separate regions are adaptively distributed during DMRG sweeps.Our scheme greatly improv...We propose an improved real-space parallel strategy for the density matrix renormalization group(DMRG)method,where boundaries of separate regions are adaptively distributed during DMRG sweeps.Our scheme greatly improves the parallel efficiency with shorter waiting time between two adjacent tasks,compared with the original real-space parallel DMRG with fixed boundaries.We implement our new strategy based on the message passing interface(MPI),and dynamically control the number of kept states according to the truncation error in each DMRG step.We study the performance of the new parallel strategy by calculating the ground state of a spin-cluster chain and a quantum chemical Hamiltonian of the water molecule.The maximum parallel efficiencies for these two models are 91%and 76%in 4 nodes,which are much higher than the real-space parallel DMRG with fixed boundaries.展开更多
We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on ...We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on the two most time-consuming sections in the finite DMRG sweeps,i.e.,the diagonalization of superblock and the truncation of subblock,we optimize our previous hybrid algorithm to achieve better performance.For the former,we adopt OpenMP application programming interface on CPU and use our own subroutines with higher bandwidth on GPU.For the later,we use GPU to accelerate matrix and vector operations involving the reduced density matrix.Applying the parallel scheme to the Hubbard model with next-nearest hopping on the 4-leg ladder,we compute the ground state of the system and obtain the charge stripe pattern which is usually observed in high temperature superconductors.Based on simulations with different numbers of DMRG kept states,we show significant performance improvement and computational time reduction with the optimized parallel algorithm.Our hybrid parallel strategy with superiority in solving the ground state of quasi-two dimensional lattices is also expected to be useful for other DMRG applications with large numbers of kept states,e.g.,the time dependent DMRG algorithms.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674139,11834005,and 11904145)the Program for Changjiang Scholars and Innovative Research Team in Universities,China(Grant No.IRT-16R35).
文摘We propose an improved real-space parallel strategy for the density matrix renormalization group(DMRG)method,where boundaries of separate regions are adaptively distributed during DMRG sweeps.Our scheme greatly improves the parallel efficiency with shorter waiting time between two adjacent tasks,compared with the original real-space parallel DMRG with fixed boundaries.We implement our new strategy based on the message passing interface(MPI),and dynamically control the number of kept states according to the truncation error in each DMRG step.We study the performance of the new parallel strategy by calculating the ground state of a spin-cluster chain and a quantum chemical Hamiltonian of the water molecule.The maximum parallel efficiencies for these two models are 91%and 76%in 4 nodes,which are much higher than the real-space parallel DMRG with fixed boundaries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674139,11834005,and 11904145)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35).
文摘We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on the two most time-consuming sections in the finite DMRG sweeps,i.e.,the diagonalization of superblock and the truncation of subblock,we optimize our previous hybrid algorithm to achieve better performance.For the former,we adopt OpenMP application programming interface on CPU and use our own subroutines with higher bandwidth on GPU.For the later,we use GPU to accelerate matrix and vector operations involving the reduced density matrix.Applying the parallel scheme to the Hubbard model with next-nearest hopping on the 4-leg ladder,we compute the ground state of the system and obtain the charge stripe pattern which is usually observed in high temperature superconductors.Based on simulations with different numbers of DMRG kept states,we show significant performance improvement and computational time reduction with the optimized parallel algorithm.Our hybrid parallel strategy with superiority in solving the ground state of quasi-two dimensional lattices is also expected to be useful for other DMRG applications with large numbers of kept states,e.g.,the time dependent DMRG algorithms.