One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap...One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.展开更多
A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other ...A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.展开更多
The increasing energy demand has pushed oil and gas exploration and development limits to extremely challenging and harsher HTHP (High Temperature and High Pressure) environments. Maintaining wellbore integrity in the...The increasing energy demand has pushed oil and gas exploration and development limits to extremely challenging and harsher HTHP (High Temperature and High Pressure) environments. Maintaining wellbore integrity in these environments, particularly in HPHT reservoirs with corrosive gases, presents a significant challenge. Robust risk evaluation and mitigation strategies are required to address these reservoirs' safety, economic, and environmental uncertainties. This study investigates chemo-mechanical properties degradations of class G oil well cement blended with silica fume, liquid silica, and latex when exposed to high temperature (150 °C) and high partial pressure of CO_(2) saturated brine. The result shows that these admixtures surround the cement grains and fill the interstitial spaces between the cement particles to form a dense crystal system of C–S–H. Consequently, the cement's percentage of pore voids, permeability, and the content of alkali compounds reduce, resulting in increased resistance to CO_(2) corrosion. Liquid silica, a specially prepared silica suspension, is a more effective alternative to silica fume in protecting oil well cement against CO_(2) chemical degradation. Micro-indentation analysis shows a significant deterioration in the mechanical properties of the cement, including average elastic modulus and hardness, particularly in the outer zones in direct contact with corrosive fluids. This study highlights the significance of incorporating admixtures to mitigate the effects of CO_(2) corrosion in HPHT environments and provides a valuable technique for quantitatively evaluating the mechanical-chemical degradation of cement sheath.展开更多
Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distribution...Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distributions is highly desired and under development. In this work, we study the transmission property of vector beams through warm rubidium vapor and realize controllable transmission of vector beams based on atomic dichroism. By utilizing the linearly polarized beam and vector beams as the pump and probe beams in a pump–probe configuration, a spatially-dependent dichroism can be obtained,which leads to spatially varied absorption of the probe beam. The controllable intensity distribution of the probe beam, as a two-petal pattern, can rotate with the variation of the pump beam's polarization states. We experimentally demonstrate the mechanism of dichroism with linear polarization light and provide an explanation based on the optical pumping effect.Alternatively, the varying trend of the probe beam's intensity is also interpreted by utilizing the Jones matrix. Our results are thus beneficial for providing potential applications in optical manipulation in atomic ensembles.展开更多
The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference patt...The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference pattern for photons with different spectra if the photons are indistinguishable for the employed detection system. The conditions to observe the second-order temporal beating with photons of different spectra are analyzed. The influence of the response time of the detection system on the observed second-order interference pattern is also discussed. It is a direct result of that measurement in quantum mechanics is dependent on the employed measuring apparatus. The results are helpful to understand the physics of two-photon interference in different schemes.展开更多
We present a theoretical investigation of the multiphoton resonance dynamics in the high-order-harmonic generation(HHG)process driven by a strong driving continuous wave(CW)field along with a weak control harmonic fie...We present a theoretical investigation of the multiphoton resonance dynamics in the high-order-harmonic generation(HHG)process driven by a strong driving continuous wave(CW)field along with a weak control harmonic field.The Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the combined laser field.Multiple multiphoton-transition paths for the harmonic emission are coherently summed.The phase information about paths can be extracted via the Fourier transform analysis of the harmonic signals which oscillate as a function of the relative phase between driving and control fields.Phase jumps are observed when sweeping across the resonance by varying the frequency or intensity of the driving field.The phase variation as a function of driving frequency at a fixed intensity and as a function of the intensity at a fixed driving frequency allows us to determine the intensity dependence of the transition energy of quantum systems.展开更多
The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an a...The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an alternative approach for the measurement of an unknown frequency in XUV or VUV. We consider the case of two driving frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental-and third-harmonics, respectively.The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the frequency-comb laser fields. Multiphoton transition paths involving both fundamentaland third-harmonic photons are opened due to the coupling of the third-harmonic frequency-comb field. The multiphoton transition paths are superpositioned when the carrier-envelope-phase shifts(CEPs) fulfill the matching condition. And the interference of the multiphoton transition paths can be controlled by tuning the relative envelope delay between the fields.We find that the quasienergy structure, as well as the multiphoton resonant high-order harmonic generation(HHG) spectra,driven by the two frequency-comb fields can be coherently controlled via the interference of multiphoton transition paths.It is also found that the spectral intensities of the generated harmonics can be modulated, and the modulation behavior is harmonic-sensitive.展开更多
The ability to measure the orbital angular momentum(OAM)distribution of vortex light is essential for OAM applications.Although there have been many studies on the measurement of OAM modes,it is difficult to quantitat...The ability to measure the orbital angular momentum(OAM)distribution of vortex light is essential for OAM applications.Although there have been many studies on the measurement of OAM modes,it is difficult to quantitatively and instantaneously measure the power distribution among different OAM modes,let alone measure the phase distribution among them.In this work,we propose an OAM complex spectrum analyzer that enables simultaneous measurements of the power and phase distributions of OAM modes by employing the rotational Doppler effect.The original OAM mode distribution is mapped to an electrical spectrum of beat signals using a photodetector.The power and phase distributions of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum.We also extend the measurement technique to other spatial modes,such as linear polarization modes.These results represent a new landmark in spatial mode analysis and show great potential for applications in OAM-based systems and optical communication systems with mode-division multiplexing.展开更多
Generation of multi-photon entangled states with high efficiency in integrated photonic quantum systems is still a big challenge. The usual three-photon generation efficiency based on the third-order nonlinear effect ...Generation of multi-photon entangled states with high efficiency in integrated photonic quantum systems is still a big challenge. The usual three-photon generation efficiency based on the third-order nonlinear effect is extremely low. Here, we propose a scheme to generate three-photon correlated states, which are entangled states in frequency space and bound states in real space, with high efficiency. This method relies on two crucial processes.On one hand, by employing a Sagnac interferometer, an incident photon can be transformed into a symmetric superposition of the clockwise and counterclockwise modes of the Sagnac loop, which can then be perfectly absorbed by the emitter. On the other hand, the coupling strengths of the two transition paths of the emitter to the Sagnac loop are set to be equal, under which the absorbed photon can be emitted completely from the cascaded transition path due to quantum interference. By adjusting the coupling strengths among the three transition paths of the emitter and the waveguide modes, we can control the spectral entanglement and spatial separation among the three photons. Our proposal can be used to generate three-photon entangled states on demand, and the efficiency can be higher than 90% with some practical parameters, which can find important applications in integrated quantum information processing.展开更多
基金the valuable discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.92265207 and T2121001)Beijing Natural Science Foundation(Grant No.Z200009).
文摘One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.
基金Project supported by the Shanxi Key Research and Development Project(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project(Grant No.2019JLP-18).
文摘A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.
基金funded by National Natural Science Foundation Project(Grant No.52274015)Opening Project Fund of Materials Service Safety Assessment Facilities(MSAF-2021-102).
文摘The increasing energy demand has pushed oil and gas exploration and development limits to extremely challenging and harsher HTHP (High Temperature and High Pressure) environments. Maintaining wellbore integrity in these environments, particularly in HPHT reservoirs with corrosive gases, presents a significant challenge. Robust risk evaluation and mitigation strategies are required to address these reservoirs' safety, economic, and environmental uncertainties. This study investigates chemo-mechanical properties degradations of class G oil well cement blended with silica fume, liquid silica, and latex when exposed to high temperature (150 °C) and high partial pressure of CO_(2) saturated brine. The result shows that these admixtures surround the cement grains and fill the interstitial spaces between the cement particles to form a dense crystal system of C–S–H. Consequently, the cement's percentage of pore voids, permeability, and the content of alkali compounds reduce, resulting in increased resistance to CO_(2) corrosion. Liquid silica, a specially prepared silica suspension, is a more effective alternative to silica fume in protecting oil well cement against CO_(2) chemical degradation. Micro-indentation analysis shows a significant deterioration in the mechanical properties of the cement, including average elastic modulus and hardness, particularly in the outer zones in direct contact with corrosive fluids. This study highlights the significance of incorporating admixtures to mitigate the effects of CO_(2) corrosion in HPHT environments and provides a valuable technique for quantitatively evaluating the mechanical-chemical degradation of cement sheath.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774286,11374238,11534008,11604258,and 11574247)China Postdoctoral Science Foundation(Grant No.2016M592771)the Fundamental Research Funds for the Central Universities,China(Grant No.xjj2018213)
文摘Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distributions is highly desired and under development. In this work, we study the transmission property of vector beams through warm rubidium vapor and realize controllable transmission of vector beams based on atomic dichroism. By utilizing the linearly polarized beam and vector beams as the pump and probe beams in a pump–probe configuration, a spatially-dependent dichroism can be obtained,which leads to spatially varied absorption of the probe beam. The controllable intensity distribution of the probe beam, as a two-petal pattern, can rotate with the variation of the pump beam's polarization states. We experimentally demonstrate the mechanism of dichroism with linear polarization light and provide an explanation based on the optical pumping effect.Alternatively, the varying trend of the probe beam's intensity is also interpreted by utilizing the Jones matrix. Our results are thus beneficial for providing potential applications in optical manipulation in atomic ensembles.
基金Project supported by the Key Research and Development Project of Shaanxi Province,China(Grant No.2019ZDLGY09-08)the Open Fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics,China(Grant No.OS19-2)the Fundamental Research Funds for the Central Universities,China
文摘The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference pattern for photons with different spectra if the photons are indistinguishable for the employed detection system. The conditions to observe the second-order temporal beating with photons of different spectra are analyzed. The influence of the response time of the detection system on the observed second-order interference pattern is also discussed. It is a direct result of that measurement in quantum mechanics is dependent on the employed measuring apparatus. The results are helpful to understand the physics of two-photon interference in different schemes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504288,11534008,and 91536115)the Fundamental Research Funds for the Central Universities of China.
文摘We present a theoretical investigation of the multiphoton resonance dynamics in the high-order-harmonic generation(HHG)process driven by a strong driving continuous wave(CW)field along with a weak control harmonic field.The Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the combined laser field.Multiple multiphoton-transition paths for the harmonic emission are coherently summed.The phase information about paths can be extracted via the Fourier transform analysis of the harmonic signals which oscillate as a function of the relative phase between driving and control fields.Phase jumps are observed when sweeping across the resonance by varying the frequency or intensity of the driving field.The phase variation as a function of driving frequency at a fixed intensity and as a function of the intensity at a fixed driving frequency allows us to determine the intensity dependence of the transition energy of quantum systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504288,11374239,11534008,and 91536115)the Fundamental Research Funds for the Central Universities,China
文摘The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an alternative approach for the measurement of an unknown frequency in XUV or VUV. We consider the case of two driving frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental-and third-harmonics, respectively.The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the frequency-comb laser fields. Multiphoton transition paths involving both fundamentaland third-harmonic photons are opened due to the coupling of the third-harmonic frequency-comb field. The multiphoton transition paths are superpositioned when the carrier-envelope-phase shifts(CEPs) fulfill the matching condition. And the interference of the multiphoton transition paths can be controlled by tuning the relative envelope delay between the fields.We find that the quasienergy structure, as well as the multiphoton resonant high-order harmonic generation(HHG) spectra,driven by the two frequency-comb fields can be coherently controlled via the interference of multiphoton transition paths.It is also found that the spectral intensities of the generated harmonics can be modulated, and the modulation behavior is harmonic-sensitive.
基金supported by the National Basic Research Program of China(Grant No.2011CB301704)the Program for New Century Excellent Talents of the Ministry of Education of China(Grant No.NCET-11-0168)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)the National Natural Science Foundation of China(Grant No.11174096,11374008,11534008 and 61475052)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province(Grant No.2014CFA004).
文摘The ability to measure the orbital angular momentum(OAM)distribution of vortex light is essential for OAM applications.Although there have been many studies on the measurement of OAM modes,it is difficult to quantitatively and instantaneously measure the power distribution among different OAM modes,let alone measure the phase distribution among them.In this work,we propose an OAM complex spectrum analyzer that enables simultaneous measurements of the power and phase distributions of OAM modes by employing the rotational Doppler effect.The original OAM mode distribution is mapped to an electrical spectrum of beat signals using a photodetector.The power and phase distributions of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum.We also extend the measurement technique to other spatial modes,such as linear polarization modes.These results represent a new landmark in spatial mode analysis and show great potential for applications in OAM-based systems and optical communication systems with mode-division multiplexing.
基金Key-Area Research and Development Program of Guangdong Province (2018B030329001)National Natural Science Foundation of China (11761141015, 91750207,12074307)+3 种基金Guangdong Special Support Program(2019JC05X397)Natural Science Foundation of Guangdong Province (2018A030313722, 2021A1515010039)Fundamental Research Funds for the Central UniversitiesSun Yat-sen University (2021qntd27)。
文摘Generation of multi-photon entangled states with high efficiency in integrated photonic quantum systems is still a big challenge. The usual three-photon generation efficiency based on the third-order nonlinear effect is extremely low. Here, we propose a scheme to generate three-photon correlated states, which are entangled states in frequency space and bound states in real space, with high efficiency. This method relies on two crucial processes.On one hand, by employing a Sagnac interferometer, an incident photon can be transformed into a symmetric superposition of the clockwise and counterclockwise modes of the Sagnac loop, which can then be perfectly absorbed by the emitter. On the other hand, the coupling strengths of the two transition paths of the emitter to the Sagnac loop are set to be equal, under which the absorbed photon can be emitted completely from the cascaded transition path due to quantum interference. By adjusting the coupling strengths among the three transition paths of the emitter and the waveguide modes, we can control the spectral entanglement and spatial separation among the three photons. Our proposal can be used to generate three-photon entangled states on demand, and the efficiency can be higher than 90% with some practical parameters, which can find important applications in integrated quantum information processing.