Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinem...Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.展开更多
Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abund...Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing.The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations(GNDs)gather around the grain boundaries and twin boundaries after tensile deformation.Although coarse-grained(CG)samples undergo a larger plastic deformation than UFG samples,the GND density decreases with grain size ranging from UFG to CG.Transmission electron microscopy results reveal that the annealing twin boundary,which effectively hinders the dislocation slip and stores dislocation in grain interior,and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability.In addition,the yield strength of fully recrystallized Al_(0.1)CrFeCoNi follows a Hall–Petch relationship(σ_y=24+676d^(–1/2)),where d takes into account both grain boundaries and annealing twin boundaries.The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately.展开更多
A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension...A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension deformation. An introduction of pre-torsion strain can improve the materials' mechanical properties through micro hardness evaluation. That is, the micro hardness of tensile samples with pre-torsion deformation is much higher than that of samples processed by single torsion or tension. It can be seen from the microstructure that pre-torsion deformation can be used to refine grains better and control grains' morphology by combining subsequent tension. The results indicate that the grains are refined most evidently for tensile samples with 2 turn pre-torsion deformation. Moreover, fracture analysis indicates that tensile samples with pre-torsion strain can present good comprehensive performance. In conclusion, pre-torsion deformation plays an important role in improving comprehensive performance and controlling microstructure evolution on pure titanium subjected to later tension deformation.展开更多
基金supported by the University Malaya(Grant code:FRGS/1/2022/TK10/UM/02/6)the National Natural Science Foundation of China(Grant No.51275414,No.51605387)Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number RGP.2/303/44。
文摘Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.
基金financially supported by the Sichuan Science and Technology Program(No.2021YFH0182)the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling(Anhui University of Technology,No.SKF22–02)+3 种基金the State Key Laboratory of Solidification Processing(Northwestern Polytechnical University,No.SKLSP202115)the Local Science and Technology Development Project of Shenzhen Guided by the Central Government(2021Szvup120)the Fundamental Research Funds for the Central Universities(Nos.2682021CX102 and 2682021GF026)the National Natural Science Foundation of China(No.11627901)。
文摘Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing.The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations(GNDs)gather around the grain boundaries and twin boundaries after tensile deformation.Although coarse-grained(CG)samples undergo a larger plastic deformation than UFG samples,the GND density decreases with grain size ranging from UFG to CG.Transmission electron microscopy results reveal that the annealing twin boundary,which effectively hinders the dislocation slip and stores dislocation in grain interior,and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability.In addition,the yield strength of fully recrystallized Al_(0.1)CrFeCoNi follows a Hall–Petch relationship(σ_y=24+676d^(–1/2)),where d takes into account both grain boundaries and annealing twin boundaries.The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately.
基金supports received from the National Natural Science Foundation of China (No. 51275414)the Aeronautical Science Foundation of China (No. 2011ZE53059)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 130-QP-2015)the National College Students Innovation Experiment Program (No. 201610699287)
文摘A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension deformation. An introduction of pre-torsion strain can improve the materials' mechanical properties through micro hardness evaluation. That is, the micro hardness of tensile samples with pre-torsion deformation is much higher than that of samples processed by single torsion or tension. It can be seen from the microstructure that pre-torsion deformation can be used to refine grains better and control grains' morphology by combining subsequent tension. The results indicate that the grains are refined most evidently for tensile samples with 2 turn pre-torsion deformation. Moreover, fracture analysis indicates that tensile samples with pre-torsion strain can present good comprehensive performance. In conclusion, pre-torsion deformation plays an important role in improving comprehensive performance and controlling microstructure evolution on pure titanium subjected to later tension deformation.