Mesocotyl elongation is a key trait influencing seedling emergence and establishment in direct-seeding rice cultivation.The phytohormone gibberellin(GA)has positive effects on mesocotyl elongation in rice.However,the ...Mesocotyl elongation is a key trait influencing seedling emergence and establishment in direct-seeding rice cultivation.The phytohormone gibberellin(GA)has positive effects on mesocotyl elongation in rice.However,the physiological and molecular basis underlying the regulation of mesocotyl elongation mediated by GA priming under deep-sowing conditions remains largely unclear.In the present study,we performed a physiological and comprehensive transcriptomic analysis of the function of GA priming in mesocotyl elongation and seedling emergence using a direct-seeding japonica rice cultivar ZH10 at a5-cm sowing depth.Physiological experiments indicated that GA priming significantly improved rice seedling emergence by increasing the activity of starch-metabolizing enzymes and compatible solute content to supply the energy essential for subsequent development.Transcriptomic analysis revealed 7074 differentially expressed genes(false discovery rate of<0.05,|log2(fold change)|of≥1)after GA priming.Furthermore,gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses revealed that genes associated with transcriptional regulation,plant hormone biosynthesis or signaling,and starch and sucrose metabolism were critical for GA-mediated promotion of rice mesocotyl elongation.Further analyses showed that the expression of the transcription factor(TF)genes(v-myb avian myeloblastosis viral oncogene homolog(MYB)alternative splicing 1(MYBAS1),phytochrome-interacting factors 1(PIF1),Oryza sativa teosinte branched 1/cycloidea/proliferating cell factor 5(Os TCP5),slender 1(SLN1),and mini zinc finger 1(MIF1)),plant hormone biosynthesis or signaling genes(brassinazole-resistant 1(BZR1),ent-kaurenoic acid oxidase-like(KAO),GRETCHEN HAGEN 3.2(GH3.2),and small auxin up RNA 36(SAUR36)),and starch and sucrose metabolism genes(α-amylases(AMY2 A and AMY1.4))was highly correlated with the mesocotyl elongation and deep-sowing tolerance response.These results enhance our understanding of how nutrient metabolism-related substances and genes regulate rice mesocotyl elongation.This may facilitate future studies on related genes and the development of novel rice varieties tolerant to deep sowing.展开更多
Globally,copper(Cu)accumulation in soils is a major environmental concern.Agricultural organic waste and some bacterial species can readily absorb metals in an eco-friendly manner,and thus are commonly used in metal-c...Globally,copper(Cu)accumulation in soils is a major environmental concern.Agricultural organic waste and some bacterial species can readily absorb metals in an eco-friendly manner,and thus are commonly used in metal-contaminated soil remediation.This study investigates the change in Cu fractions during the aging process and the time effects of rice straw(RS)and engineered bacteria(EB)(Pseudomonas putida X4/pIME)on reduction of Cu mobility.Three typical Chinese soils(red,cinnamon,and black soils)were incubated with RS or RS+EB in the presence of exogenous Cu for 24 months.The soil physicochemical properties,reactive soil components,Cu fractions,and Cu mobility were determined over time.The Cu mobility factor(MF)values were the lowest in the black soil(6.4-9.2)because of its high organic carbon and clay contents.The additions of both RS and RS+EB accelerated Cu stabilization during the aging process in all three soils.The Cu MF values decreased with time during the initial 20 months;however,the MF values increased thereafter in all soils,which might be due to the reduction of humic substances and amorphous iron oxides and the increase in iron oxides complexed on the organic matter.The reduction rates of Cu MF were similar after 16,24,and more than 24 months in the red,cinnamon,and black soils,respectively,indicating that RS and RS+EB could limit Cu mobility at different times in various soils.The RS treatment showed the greatest efficiency in reducing Cu mobility in the red,cinnamon,and black soils after 12,12,and 8 months of incubation,respectively.The RS+EB treatment was more efficient than the RS treatment in the red soil during the initial 8 months of the incubation period.Our study provides theoretical support for Cu risk assessments and RS supplementation for Cu remediation in different soils.展开更多
To the Editor:The survival rate from conventional cardiopulmonary resuscitation(CCPR)of out-of-hospital and in-hospital cardiac arrest ranges from 9%to 20%.[1]Without returning of spontaneous circulation(ROSC)after CC...To the Editor:The survival rate from conventional cardiopulmonary resuscitation(CCPR)of out-of-hospital and in-hospital cardiac arrest ranges from 9%to 20%.[1]Without returning of spontaneous circulation(ROSC)after CCPR,the chance of recovery is very poor.Initiating venoarterial extracorporeal membrane oxygenation in those patients may provide adequate organ perfusion that allows for longer organ viability and permit time for therapies seeking to correct the inciting pathologic event,which is termed extracorporeal cardiopulmonary resuscitation(ECPR).[2]Time to treatment,ECPR-related complications,as well as etiology,have been recognized as the main predictors of survival for ECPR patients.[3]ECPR has been carried out more and more in China,but the information on ECPR application remains unknown.Therefore,we conducted a retrospective survey about the usage of ECPR in China,including patient selection,initiation and management of extracorporeal mechanical ventilation(ECMO),patient outcome,and compared the status during 2017 and 2020.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFD0100101-19)the Rice Industry Technology System of Henan Province(No.S2012-04)the Independent Innovation Fund Program of Henan Academy of Agricultural Sciences(No.2020ZC07)。
文摘Mesocotyl elongation is a key trait influencing seedling emergence and establishment in direct-seeding rice cultivation.The phytohormone gibberellin(GA)has positive effects on mesocotyl elongation in rice.However,the physiological and molecular basis underlying the regulation of mesocotyl elongation mediated by GA priming under deep-sowing conditions remains largely unclear.In the present study,we performed a physiological and comprehensive transcriptomic analysis of the function of GA priming in mesocotyl elongation and seedling emergence using a direct-seeding japonica rice cultivar ZH10 at a5-cm sowing depth.Physiological experiments indicated that GA priming significantly improved rice seedling emergence by increasing the activity of starch-metabolizing enzymes and compatible solute content to supply the energy essential for subsequent development.Transcriptomic analysis revealed 7074 differentially expressed genes(false discovery rate of<0.05,|log2(fold change)|of≥1)after GA priming.Furthermore,gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses revealed that genes associated with transcriptional regulation,plant hormone biosynthesis or signaling,and starch and sucrose metabolism were critical for GA-mediated promotion of rice mesocotyl elongation.Further analyses showed that the expression of the transcription factor(TF)genes(v-myb avian myeloblastosis viral oncogene homolog(MYB)alternative splicing 1(MYBAS1),phytochrome-interacting factors 1(PIF1),Oryza sativa teosinte branched 1/cycloidea/proliferating cell factor 5(Os TCP5),slender 1(SLN1),and mini zinc finger 1(MIF1)),plant hormone biosynthesis or signaling genes(brassinazole-resistant 1(BZR1),ent-kaurenoic acid oxidase-like(KAO),GRETCHEN HAGEN 3.2(GH3.2),and small auxin up RNA 36(SAUR36)),and starch and sucrose metabolism genes(α-amylases(AMY2 A and AMY1.4))was highly correlated with the mesocotyl elongation and deep-sowing tolerance response.These results enhance our understanding of how nutrient metabolism-related substances and genes regulate rice mesocotyl elongation.This may facilitate future studies on related genes and the development of novel rice varieties tolerant to deep sowing.
基金supported by the National Key R&D Program of China(No.2019YFC1605600)the National Natural Science Foundation of China(No.32072662)+5 种基金the National Youth Natural Science Foundation(No.4180071811)the Natural Science Foundation of Guangdong Province,China(No.2020A1515010819)the Doctor-Initiated Project of the Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences,China(No.ZXRC201903)the President Foundation of Guangdong Academy of Agricultural Sciences,China(No.202017)the Special Found for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science,China(No.R2021YJ-QG006)the Foundation Project of Director of Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences,China(No.DWJJ-202113)。
文摘Globally,copper(Cu)accumulation in soils is a major environmental concern.Agricultural organic waste and some bacterial species can readily absorb metals in an eco-friendly manner,and thus are commonly used in metal-contaminated soil remediation.This study investigates the change in Cu fractions during the aging process and the time effects of rice straw(RS)and engineered bacteria(EB)(Pseudomonas putida X4/pIME)on reduction of Cu mobility.Three typical Chinese soils(red,cinnamon,and black soils)were incubated with RS or RS+EB in the presence of exogenous Cu for 24 months.The soil physicochemical properties,reactive soil components,Cu fractions,and Cu mobility were determined over time.The Cu mobility factor(MF)values were the lowest in the black soil(6.4-9.2)because of its high organic carbon and clay contents.The additions of both RS and RS+EB accelerated Cu stabilization during the aging process in all three soils.The Cu MF values decreased with time during the initial 20 months;however,the MF values increased thereafter in all soils,which might be due to the reduction of humic substances and amorphous iron oxides and the increase in iron oxides complexed on the organic matter.The reduction rates of Cu MF were similar after 16,24,and more than 24 months in the red,cinnamon,and black soils,respectively,indicating that RS and RS+EB could limit Cu mobility at different times in various soils.The RS treatment showed the greatest efficiency in reducing Cu mobility in the red,cinnamon,and black soils after 12,12,and 8 months of incubation,respectively.The RS+EB treatment was more efficient than the RS treatment in the red soil during the initial 8 months of the incubation period.Our study provides theoretical support for Cu risk assessments and RS supplementation for Cu remediation in different soils.
文摘To the Editor:The survival rate from conventional cardiopulmonary resuscitation(CCPR)of out-of-hospital and in-hospital cardiac arrest ranges from 9%to 20%.[1]Without returning of spontaneous circulation(ROSC)after CCPR,the chance of recovery is very poor.Initiating venoarterial extracorporeal membrane oxygenation in those patients may provide adequate organ perfusion that allows for longer organ viability and permit time for therapies seeking to correct the inciting pathologic event,which is termed extracorporeal cardiopulmonary resuscitation(ECPR).[2]Time to treatment,ECPR-related complications,as well as etiology,have been recognized as the main predictors of survival for ECPR patients.[3]ECPR has been carried out more and more in China,but the information on ECPR application remains unknown.Therefore,we conducted a retrospective survey about the usage of ECPR in China,including patient selection,initiation and management of extracorporeal mechanical ventilation(ECMO),patient outcome,and compared the status during 2017 and 2020.