Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio...Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.展开更多
Polycyclic aromatic hydrocarbons(PAHs)pollution,particularly in coastal environments,is a global concern.In this study,the biomonitoring and ranking effects of PAHs in the rockfish Sebastiscus marmoratus were determin...Polycyclic aromatic hydrocarbons(PAHs)pollution,particularly in coastal environments,is a global concern.In this study,the biomonitoring and ranking effects of PAHs in the rockfish Sebastiscus marmoratus were determined in the Maowei Sea,China.The results showed that the concentrations of the 16 priority PAHs detected in the surface seawater were moderate compared with those in other coastal areas worldwide,and the possible sources were rapid industrialization and urbanization combined with atmospheric deposition and runoff.Nested analysis of variance(ANOVA)suggested significant differences in the hepatic ethoxyresorufin-O-deethylase(EROD)activities and phenanthrene-derived metabolites in bile between the port area and the oyster farming area.The fish expert system(FES)was applied to evaluate the biological effects of PAHs on fish.The FES data demonstrated that the biological effect levels of Site S1(level III,medium stress)were higher than those of the other sampling sites(level II,low stress).展开更多
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum。
文摘Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2015008,2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211+1 种基金the National Key Research and Development Program of China under contract No.2019YFD0901101the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum.
文摘Polycyclic aromatic hydrocarbons(PAHs)pollution,particularly in coastal environments,is a global concern.In this study,the biomonitoring and ranking effects of PAHs in the rockfish Sebastiscus marmoratus were determined in the Maowei Sea,China.The results showed that the concentrations of the 16 priority PAHs detected in the surface seawater were moderate compared with those in other coastal areas worldwide,and the possible sources were rapid industrialization and urbanization combined with atmospheric deposition and runoff.Nested analysis of variance(ANOVA)suggested significant differences in the hepatic ethoxyresorufin-O-deethylase(EROD)activities and phenanthrene-derived metabolites in bile between the port area and the oyster farming area.The fish expert system(FES)was applied to evaluate the biological effects of PAHs on fish.The FES data demonstrated that the biological effect levels of Site S1(level III,medium stress)were higher than those of the other sampling sites(level II,low stress).