期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Convolutional Neural Network for Traffic Scene Segmentation
1
作者 fuliang xu Yong Luo +1 位作者 Chuanlong Sun Hong Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2691-2708,共18页
In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhanc... In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhance the ability of autonomous driving systems to recognize traffic participants.The algorithmincorporates long and shortterm memory networks and the fused attention module(GSAM,GCT,and Spatial Attention Module)to enhance the algorithm’s capability to process both global and local information.Additionally,to increase the network’s initial operation stability,the original network activation function was replaced with Gaussian error linear unit.Experiments were conducted using the publicly available Cityscapes dataset.Comparing the test results,it was observed that the revised algorithmoutperformed the original algorithmin terms of AP_(50),AP_(75),and othermetrics by 8.7%and 9.6%for target detection and 12.5%and 13.3%for segmentation. 展开更多
关键词 Instance segmentation deep learning convolutional neural network attention mechanism
下载PDF
Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
2
作者 Chuanlong Sun Hong Zhao +2 位作者 Liang Mu fuliang xu Laiwei Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期787-801,共15页
Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based... Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism(SE)and Depthwise Separable Convolution(DSC)is designed.Meanwhile,Adam-GC,an Adam optimization algorithm based on Gradient Compression(GC),is proposed to improve the training speed,segmentation accuracy,generalization ability and stability of the algorithm network.To verify and compare the effectiveness of the algorithm network proposed in this paper,the trained networkmodel is used for experimental verification and comparative test on the Cityscapes semantic segmentation dataset.The validation and comparison results show that the overall segmentation results of the algorithmnetwork can achieve 78.02%MIoU on Cityscapes validation set,which is better than the basic algorithm network and the other latest semantic segmentation algorithms network.Besides meeting the stability and accuracy requirements,it has a particular significance for the development of image semantic segmentation. 展开更多
关键词 Deep learning semantic segmentation attention mechanism depthwise separable convolution gradient compression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部