Self-consolidating concrete(SCC)with manufactured sand(MSCC)is crucial to guarantee the quality of concrete construction technology and the associated property.The properties of MSCC with different microlimestone powd...Self-consolidating concrete(SCC)with manufactured sand(MSCC)is crucial to guarantee the quality of concrete construction technology and the associated property.The properties of MSCC with different microlimestone powder(MLS)replacements of retreated manufactured sand(TMsand)are investigated in this study.The result indicates that high-performance SCC,made using TMsand(TMSCC),achieved high workability,good mechanical properties,and durability by optimizing MLS content and adding fy ash and silica fume.In particular,the TMSCC with 12%MLS content exhibits the best workability,and the TMSCC with 4%MLS content has the highest strength in the late age,which is even better than that of SCC made with the river sand(R sand).Though MLS content slightly affects the hydration reaction of cement and mainly plays a role in the nucleation process in concrete structures compared to silica fume and fly ash,increasing MLS content can evidently have a significant impact on the early age hydration progress.TMsand with MLS content ranging from 8%to 12%may be a suitable alternative for the Rsand used in the SCC as fine aggregate.The obtained results can be used to promote the application of SCC made with manufactured sand and mineral admixtures for concrete-based infrastructure.展开更多
In this study,a total of 177 flexural experimental tests of corroded reinforced concrete(CRC)beams were collected from the published literature.The database of flexural capacity of CRC beam was established by using un...In this study,a total of 177 flexural experimental tests of corroded reinforced concrete(CRC)beams were collected from the published literature.The database of flexural capacity of CRC beam was established by using unified and standardized experimental data.Through this database,the effects of various parameters on the flexural capacity of CRC beams were discussed,including beam width,the effective height of beam section,ratio of strength between longitudinal reinforcement and concrete,concrete compressive strength,and longitudinal reinforcement corrosion ratio.The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams,while other parameters have much less effect.In addition,six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database.It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams,there is one model overestimating the flexural capacity.Finally,a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.展开更多
基金All the authors appreciate the supports from the Australian Research Council(DEI50101751,IH150100006)University of Technology Sydney Research Academic Program at Tech Lab(UTS RAPT),University of Technology Sydney Tech Lab Blue Sky Research Scheme.
文摘Self-consolidating concrete(SCC)with manufactured sand(MSCC)is crucial to guarantee the quality of concrete construction technology and the associated property.The properties of MSCC with different microlimestone powder(MLS)replacements of retreated manufactured sand(TMsand)are investigated in this study.The result indicates that high-performance SCC,made using TMsand(TMSCC),achieved high workability,good mechanical properties,and durability by optimizing MLS content and adding fy ash and silica fume.In particular,the TMSCC with 12%MLS content exhibits the best workability,and the TMSCC with 4%MLS content has the highest strength in the late age,which is even better than that of SCC made with the river sand(R sand).Though MLS content slightly affects the hydration reaction of cement and mainly plays a role in the nucleation process in concrete structures compared to silica fume and fly ash,increasing MLS content can evidently have a significant impact on the early age hydration progress.TMsand with MLS content ranging from 8%to 12%may be a suitable alternative for the Rsand used in the SCC as fine aggregate.The obtained results can be used to promote the application of SCC made with manufactured sand and mineral admixtures for concrete-based infrastructure.
基金The authors acknowledge the research supports from the National Natural Science Foundation of China(Grant Nos.51820105014,51738001,U 1934217)the research funds from Australian Research Council(DEI50101751)+1 种基金ARC Industrial Transformation Research Hub Component Project“Nano-geopolymer composites for underground prefabricated structures”with Wuhan Zhihe Geotechnical Engineering Co.,Ltd.The authors are also grateful for the financial supports of the University of Technology Sydney Research Academic Program at Tech Laboratory(UTS RAPT)and University of Technology Sydney Tech Laboratory Blue Sky Research Scheme.
文摘In this study,a total of 177 flexural experimental tests of corroded reinforced concrete(CRC)beams were collected from the published literature.The database of flexural capacity of CRC beam was established by using unified and standardized experimental data.Through this database,the effects of various parameters on the flexural capacity of CRC beams were discussed,including beam width,the effective height of beam section,ratio of strength between longitudinal reinforcement and concrete,concrete compressive strength,and longitudinal reinforcement corrosion ratio.The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams,while other parameters have much less effect.In addition,six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database.It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams,there is one model overestimating the flexural capacity.Finally,a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.