Incorporating topological physics into the realm of quantum photonics holds the promise of developing quantum light emitters with inherent topological robustness and immunity to backscattering.Nonetheless,the determin...Incorporating topological physics into the realm of quantum photonics holds the promise of developing quantum light emitters with inherent topological robustness and immunity to backscattering.Nonetheless,the deterministic interaction of quantum emitters with topologically nontrivial resonances remains largely unexplored.Here we present a single photon emitter that utilizes a single semiconductor quantum dot,deterministically coupled to a second-order topological corner state in a photonic crystal cavity.By investigating the Purcell enhancement of both single photon count and emission rate within this topological cavity,we achieve an experimental Purcell factor of Fp=3.7.Furthermore,we demonstrate the on-demand emission of polarized single photons,with a second-order autocorrelation function g(2)(0)as low as 0.024±0.103.Our approach facilitates the customization of light-matter interactions in topologically nontrivial environments,thereby offering promising applications in the field of quantum photonics.展开更多
基金support from National Key Research and Development Program of China(2022YFA1404304)the Science and Technology Program of Guangzhou(202103030001)+3 种基金the Innovation Program for Quantum Science and Technology(2021ZD0301400)the National Natural Science Foundation of China(Grant No.62035016 and 12074442)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023B1515040023)the National Key R&D Program of Guang-dong Province(2020B0303020001).
文摘Incorporating topological physics into the realm of quantum photonics holds the promise of developing quantum light emitters with inherent topological robustness and immunity to backscattering.Nonetheless,the deterministic interaction of quantum emitters with topologically nontrivial resonances remains largely unexplored.Here we present a single photon emitter that utilizes a single semiconductor quantum dot,deterministically coupled to a second-order topological corner state in a photonic crystal cavity.By investigating the Purcell enhancement of both single photon count and emission rate within this topological cavity,we achieve an experimental Purcell factor of Fp=3.7.Furthermore,we demonstrate the on-demand emission of polarized single photons,with a second-order autocorrelation function g(2)(0)as low as 0.024±0.103.Our approach facilitates the customization of light-matter interactions in topologically nontrivial environments,thereby offering promising applications in the field of quantum photonics.