期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Selectivity control of photocatalytic CO_(2) reduction over ZnS-based nanocrystals:A comparison study on the role of ionic cocatalysts
1
作者 Hong Pang fumihiko ichihara +4 位作者 Xianguang Meng Lijuan Li Yuqi Xiao Wei Zhou Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期391-398,I0009,共9页
Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorga... Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorganic reaction system is investigated.Confined single-atom Ni^(2+),Co^(2+),and Cd^(2+)sites were created via cation-exchange process and enhanced CO_(2)reduction,while Fe^(2+)suppressed the photocatalytic activity for both water and CO_(2)reduction.The modified ZnS:Cu photocatalysts(M/ZnS:Cu)demonstrated tunable product selectivity,with Ni^(2+)and Co^(2+)showing high selectivity for syngas production and Cd^(2+)displaying remarkable formate selectivity.DFT calculations indicated favorable H adsorption free energy on Ni^(2+)and Co^(2+)sites,promoting the hydrogen evolution reaction.The selectivity of CO_(2)reduction products was found to be sensitive to the initial intermediate adsorption states.*COOH formed on Ni^(2+)and Co^(2+)while*OCHO formed on Cd^(2+),favoring the production of CO and HCOOH as the main products,respectively.This work provides valuable insights for developing efficient solar-to-fuel platforms with controlled CO_(2)reduction selectivity. 展开更多
关键词 CO_(2) reduction Photocatalysis Zns Ionic cocatalyst FORMATE Syngas DFT calculations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部