This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the at...This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.展开更多
The high-precision terrestrial reference frame,as the spatial benchmark for geodesy,is an important national infrastructure.However,due to the influence of nonlinear factors related to geophysical phenomena,the overal...The high-precision terrestrial reference frame,as the spatial benchmark for geodesy,is an important national infrastructure.However,due to the influence of nonlinear factors related to geophysical phenomena,the overall maintenance accuracy of the ITRF framework is still at the centimeter level.Therefore,accurately characterizing the true trajectories of linear motion,nonlinear motion,and geocentric motion of the reference station is the key to achieve the construction and maintenance technology of a millimeter level terrestrial reference framework.Based on long-term global and regional GNSS observation data,more Chinese geodesy scientists devoted much efforts to the maintenance of millimeter-level geodetic reference framework.The main contributions of this work included the followings:①Dynamic maintenance of millimeter-level terrestrial reference frame;②Research progress on the method of maintenance of regional reference frame based on GNSS;③The progress of CGCS2000 frame maintenance in millimeter level accuracy;④Reprocessing and reanalysis of two-decade GNSS observation in continental China;⑤Research on current GNSS velocity field model and deformation in Chinese mainland;⑥The preliminary realization and evaluation of CTRF2020.展开更多
基金the National Natural Science Foundation of China(Grant No.42174047 and No.42174036)the National Science Foundation Project for Outstanding Youth(No.42104034).
文摘This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.
基金National Natural Science Foundation of China(Nos.42274044,41974010,42330113,41804018)。
文摘The high-precision terrestrial reference frame,as the spatial benchmark for geodesy,is an important national infrastructure.However,due to the influence of nonlinear factors related to geophysical phenomena,the overall maintenance accuracy of the ITRF framework is still at the centimeter level.Therefore,accurately characterizing the true trajectories of linear motion,nonlinear motion,and geocentric motion of the reference station is the key to achieve the construction and maintenance technology of a millimeter level terrestrial reference framework.Based on long-term global and regional GNSS observation data,more Chinese geodesy scientists devoted much efforts to the maintenance of millimeter-level geodetic reference framework.The main contributions of this work included the followings:①Dynamic maintenance of millimeter-level terrestrial reference frame;②Research progress on the method of maintenance of regional reference frame based on GNSS;③The progress of CGCS2000 frame maintenance in millimeter level accuracy;④Reprocessing and reanalysis of two-decade GNSS observation in continental China;⑤Research on current GNSS velocity field model and deformation in Chinese mainland;⑥The preliminary realization and evaluation of CTRF2020.