The growth traits (tree height, diameter at breast height, and stem straightness degree) and wood properties [wood density (WD), fiber length, fiber width, ash content (AC), lignin content, cellulose content, hemicell...The growth traits (tree height, diameter at breast height, and stem straightness degree) and wood properties [wood density (WD), fiber length, fiber width, ash content (AC), lignin content, cellulose content, hemicellulose content (HEC), and holocellulose content] of 208 26-year-old Larix olgensis clones were analyzed. Except for WD and AC, there were significant differences (p < 0.01) for all traits among clones. The phenotypic coefficient of variation and repeatability of all traits were 9.34-35.33% and 0.218-0.930, respectively. Tree height and diameter at breast height showed significant positive correlation; however, the correlation coefficients among growth characteristics and wood properties were mostly not significant. Ten clones (L70, L56, L82, L90, L59, L91, L61, L92, L86, and L64) were selected as excellent clones under a selection rate of 5%, using tree height, diameter at breast height, and stem straightness degree as evaluation indexes, providing genetic gains of 28.69, 17.96, and 0.67%, respectively. Ten clones (L88, L305, L59, L66, L253, L304, L277, L298, L248, and L293) were selected as excellent clones using wood properties as an evaluation index, with a selection rate of 5%, providing genetic gains in WD, fiber length, fiber width, cellulose content, and HEC of 4.14, 3.64, 9.28, 6.77, and 9.61%, respectively. This study provides a theoretical basis for selecting excellent L. olgensis clones.展开更多
Wetlands are one of the important natural sources of atmospheric methane (CH_4),as an important part of wetlands,floating plants can be expected to affect methane release.However,the effects of floating plants on meth...Wetlands are one of the important natural sources of atmospheric methane (CH_4),as an important part of wetlands,floating plants can be expected to affect methane release.However,the effects of floating plants on methane release are limited.In this study,methane fluxes,physiochemical properties of the overlying water,methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes,Hydrocharis dubia,and Trapa natans.We found that E.crassipes,H.dubia,and T.natans plants could inhibit 84.31%-97.31%,4.98%-88.91%and 43.62%-92.51%of methane fluxes at interface of water-atmosphere compared to Control,respectively.Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots,stems,and leaves.At the same biomass,root of E.crassipes (36.44%) had the highest methane oxidation potential,followed by H.dubia (12.99%) and T.natans (11.23%).Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10%-3.33%) were known methanotrophs.Type I methanotrophs accounted for 95.07%of total methanotrophs.The pmoA gene abundances ranged from 1.90×10^(16)to 2.30×10^(18)copies/g fresh weight of root biofilms.Abundances of pmoA gene was significantly positively correlated with environmental parameters.Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation.This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.展开更多
The independent college is a new organizational form within the Chinese higher education system born in the late 20th century and has become an important part of the system.By 2012,independent colleges amounted to 303...The independent college is a new organizational form within the Chinese higher education system born in the late 20th century and has become an important part of the system.By 2012,independent colleges amounted to 303 institutions with a total enrolment of 2.78 million students,accounting for 12.7%of the number of institutions and 11.6%of the enrolment in the Chinese higher education system.From the date of its birth,however,it is full of controversy.On the one hand it is viewed as an institutional innovation to enhance opportunities for higher education access;on the other hand,many people criticized it as inequitable because generally the tuition fees are twice as high as in public universities.Just as Zhejiang University City College,every independent college’s name is affiliated to the public university involved,but it has an independent social identity。展开更多
基金financially supported by the National Science and Technology Program of China during the Twelfth FiveYear Plan Period(Grant No.2013AA102704)the Fundamental Research Funds for the Central Universities(Grant No.2572015EA03)
文摘The growth traits (tree height, diameter at breast height, and stem straightness degree) and wood properties [wood density (WD), fiber length, fiber width, ash content (AC), lignin content, cellulose content, hemicellulose content (HEC), and holocellulose content] of 208 26-year-old Larix olgensis clones were analyzed. Except for WD and AC, there were significant differences (p < 0.01) for all traits among clones. The phenotypic coefficient of variation and repeatability of all traits were 9.34-35.33% and 0.218-0.930, respectively. Tree height and diameter at breast height showed significant positive correlation; however, the correlation coefficients among growth characteristics and wood properties were mostly not significant. Ten clones (L70, L56, L82, L90, L59, L91, L61, L92, L86, and L64) were selected as excellent clones under a selection rate of 5%, using tree height, diameter at breast height, and stem straightness degree as evaluation indexes, providing genetic gains of 28.69, 17.96, and 0.67%, respectively. Ten clones (L88, L305, L59, L66, L253, L304, L277, L298, L248, and L293) were selected as excellent clones using wood properties as an evaluation index, with a selection rate of 5%, providing genetic gains in WD, fiber length, fiber width, cellulose content, and HEC of 4.14, 3.64, 9.28, 6.77, and 9.61%, respectively. This study provides a theoretical basis for selecting excellent L. olgensis clones.
基金supported by the National Natural Science Foundation of China (No. 51879084)the Technology Program for Water Pollution Control and Treatment of China (No. 2018ZX07208-004)。
文摘Wetlands are one of the important natural sources of atmospheric methane (CH_4),as an important part of wetlands,floating plants can be expected to affect methane release.However,the effects of floating plants on methane release are limited.In this study,methane fluxes,physiochemical properties of the overlying water,methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes,Hydrocharis dubia,and Trapa natans.We found that E.crassipes,H.dubia,and T.natans plants could inhibit 84.31%-97.31%,4.98%-88.91%and 43.62%-92.51%of methane fluxes at interface of water-atmosphere compared to Control,respectively.Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots,stems,and leaves.At the same biomass,root of E.crassipes (36.44%) had the highest methane oxidation potential,followed by H.dubia (12.99%) and T.natans (11.23%).Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10%-3.33%) were known methanotrophs.Type I methanotrophs accounted for 95.07%of total methanotrophs.The pmoA gene abundances ranged from 1.90×10^(16)to 2.30×10^(18)copies/g fresh weight of root biofilms.Abundances of pmoA gene was significantly positively correlated with environmental parameters.Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation.This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.
文摘The independent college is a new organizational form within the Chinese higher education system born in the late 20th century and has become an important part of the system.By 2012,independent colleges amounted to 303 institutions with a total enrolment of 2.78 million students,accounting for 12.7%of the number of institutions and 11.6%of the enrolment in the Chinese higher education system.From the date of its birth,however,it is full of controversy.On the one hand it is viewed as an institutional innovation to enhance opportunities for higher education access;on the other hand,many people criticized it as inequitable because generally the tuition fees are twice as high as in public universities.Just as Zhejiang University City College,every independent college’s name is affiliated to the public university involved,but it has an independent social identity。