Worldwide,metastasis is the leading cause of more than 90%of cancer-related deaths.Currently,no specific therapies effectively impede metastasis.Metastatic processes are controlled by complex regulatory networks and t...Worldwide,metastasis is the leading cause of more than 90%of cancer-related deaths.Currently,no specific therapies effectively impede metastasis.Metastatic processes are controlled by complex regulatory networks and transcriptional hierarchy.Corepressor metastasis-associated protein 3(MTA3)has been confirmed as a novel component of nucleosome remodeling and histone deacetylation(NuRD).Increasing evidence supports the theory that,in the recruitment of transcription factors,coregulators function as master regulators rather than passive passengers.As a master regulator,MTA3 governs the target selection for Nu RD and functions as a transcriptional repressor.MTA3dysregulation is associated with tumor progression,invasion,and metastasis in various cancers.MTA3 is also a key regulator of E-cadherin expression and epithelial-to-mesenchymal transition.Elucidating the functions of MTA3 might help to find additional therapeutic approaches for targeting components of NuRD.展开更多
Ensuring food safety while reducing agricultural non-point source pollution is quite challenging,especially in developing and underdeveloped countries.Effective systematic strategies and comprehensive technologies nee...Ensuring food safety while reducing agricultural non-point source pollution is quite challenging,especially in developing and underdeveloped countries.Effective systematic strategies and comprehensive technologies need to be developed for agricultural non-point source pollution control at the watershed scale to improve surface water quality.In this review,a proposal is made for a full time-space governance strategy that prioritizes source management followed by endpoint water pollution control.The 4R chain technology system is specifically reviewed,including source reduction,process retention,nutrient reuse and water restoration.The 4R chain technology system with the full time-space governance strategy was applied at the scale of an administrative village and proved to be a feasible solution for reducing agricultural non-point source pollution in China.In the future,a monitoring system needs to be established to trace N and P transport.Additionally,new smart fertilizer and intelligent equipment need to be developed,and relevant governance standards and supportive policies need to be set to enhance the efficacy of agricultural non-point source pollution control.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.81071736,30973508,and 81572876)the Clinical Research Enhancement Initiative of Shantou University Medical College(Nos.201412 and 201421)the Collaborative and Creative Center,Molecular Diagnosis and Personalized Medicine,Shantou University,Guangdong Province,and the Department of Education,Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases(Nos.2015072,2015065,2015020,and 2015077)
文摘Worldwide,metastasis is the leading cause of more than 90%of cancer-related deaths.Currently,no specific therapies effectively impede metastasis.Metastatic processes are controlled by complex regulatory networks and transcriptional hierarchy.Corepressor metastasis-associated protein 3(MTA3)has been confirmed as a novel component of nucleosome remodeling and histone deacetylation(NuRD).Increasing evidence supports the theory that,in the recruitment of transcription factors,coregulators function as master regulators rather than passive passengers.As a master regulator,MTA3 governs the target selection for Nu RD and functions as a transcriptional repressor.MTA3dysregulation is associated with tumor progression,invasion,and metastasis in various cancers.MTA3 is also a key regulator of E-cadherin expression and epithelial-to-mesenchymal transition.Elucidating the functions of MTA3 might help to find additional therapeutic approaches for targeting components of NuRD.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1700803)Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(19)1007).
文摘Ensuring food safety while reducing agricultural non-point source pollution is quite challenging,especially in developing and underdeveloped countries.Effective systematic strategies and comprehensive technologies need to be developed for agricultural non-point source pollution control at the watershed scale to improve surface water quality.In this review,a proposal is made for a full time-space governance strategy that prioritizes source management followed by endpoint water pollution control.The 4R chain technology system is specifically reviewed,including source reduction,process retention,nutrient reuse and water restoration.The 4R chain technology system with the full time-space governance strategy was applied at the scale of an administrative village and proved to be a feasible solution for reducing agricultural non-point source pollution in China.In the future,a monitoring system needs to be established to trace N and P transport.Additionally,new smart fertilizer and intelligent equipment need to be developed,and relevant governance standards and supportive policies need to be set to enhance the efficacy of agricultural non-point source pollution control.