期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Forecasting Scenario Generation for Multiple Wind Farms Considering Time-series Characteristics and Spatial-temporal Correlation 被引量:4
1
作者 Qingyu Tu Shihong Miao +5 位作者 fuxing yao yaowang Li Haoran Yin Ji Han Di Zhang Weichen Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第4期837-848,共12页
Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series c... Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series characteristics and spatial-temporal correlation of wind power generation. In this paper, the marginal distribution model and the dependence structure are combined to describe these complex characteristics. On this basis, a scenario generation method for multiple wind farms is proposed. For the marginal distribution model, the autoregressive integrated moving average-generalized autoregressive conditional heteroskedasticity-t (ARIMA-GARCH-t) model is proposed to capture the time-series characteristics of wind power generation. For the dependence structure, a time-varying regular vine mixed Copula (TRVMC) model is established to capture the spatial-temporal correlation of multiple wind farms. Based on the data from 8 wind farms in Northwest China, sufficient scenarios are generated. The effectiveness of the scenarios is evaluated in 3 aspects. The results show that the generated scenarios have similar fluctuation characteristics, autocorrelation, and crosscorrelation with the actual wind power sequences. 展开更多
关键词 Scenario generation wind farm regular vine Copula spatial-temporal correlation time-series characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部