期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relational Topology-based Heterogeneous Network Embedding for Predicting Drug-Target Interactions
1
作者 Linlin Zhang Chunping Ouyang +2 位作者 fuyu hu Yongbin Liu Zheng Gao 《Data Intelligence》 EI 2023年第2期475-493,共19页
Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods ... Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods for drug-target interaction(DTI)identification remain either time consuming or heavily dependent on domain expertise.Therefore,various computational models have been proposed to predict possible interactions between drugs and target proteins.However,most prediction methods do not consider the topological structures characteristics of the relationship.In this paper,we propose a relational topologybased heterogeneous network embedding method to predict drug-target interactions,abbreviated as RTHNE_DTI.We first construct a heterogeneous information network based on the interaction between different types of nodes,to enhance the ability of association discovery by fully considering the topology of the network.Then drug and target protein nodes can be represented by the other types of nodes.According to the different topological structure of the relationship between the nodes,we divide the relationship in the heterogeneous network into two categories and model them separately.Extensive experiments on the realworld drug datasets,RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods.RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs. 展开更多
关键词 Link prediction Heterogeneous information network Drug-target interaction Network embedding Feature representation
原文传递
Resilience-Driven Road Network Retrofit Optimization Subject to Tropical Cyclones Induced Roadside Tree Blowdown
2
作者 fuyu hu Saini Yang Russell G.Thompson 《International Journal of Disaster Risk Science》 SCIE CSCD 2021年第1期72-89,共18页
This article focuses on decision making for retrofit investment of road networks in order to alleviate severe consequences of roadside tree blowdown during tropical cyclones.The consequences include both the physical ... This article focuses on decision making for retrofit investment of road networks in order to alleviate severe consequences of roadside tree blowdown during tropical cyclones.The consequences include both the physical damage associated with roadside trees and the functional degradation associated with road networks.A trilevel,two-stage,and multiobjective stochastic mathematical model was developed to dispatch limited resources to retrofit the roadside trees of a road network.In the model,a new metric was designed to evaluate the performance of a road network;resilience was considered from robustness and recovery efficiency of a road network.The proposed model is at least a nondeterministic polynomialtime hardness(NP-hard)problem,which is unlikely to be solved by a polynomial time algorithm.Pareto-optimal solutions for this problem can be obtained by a proposed trilevel algorithm.The random forest method was employed to transform the trilevel algorithm into a singlelevel algorithm in order to decrease the computation burden.Roadside tree retrofit of a provincial highway network on Hainan Island,China was selected as a case area because it suffers severely from tropical cyclones every year,where there is an urgency to upgrade roadside trees against tropical cyclones.We found that roadside tree retrofit investment significantly alleviates the expected economic losses of roadside tree blowdown,at the same time that it promotes robustness and expected recovery efficiency of the road network. 展开更多
关键词 Hainan Island Nondominated sorting genetic algorithm II(NSGA II) Random forest method Road network resilience Roadside tree retrofit Tropical cyclones
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部